题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968

题意:

  设f(x) = x约数的个数。如:12的约数有1,2,3,4,6,12,所以f(12) = 6。

  给定n,问你f(1)到f(n)之和。

题解:

  好多做法。。。

  (1)O(N*sqrt(N))

      纯暴力(应该过不了)。

      枚举i,sqrt(i)复杂度求出约数个数,更新ans。

      不附代码。

  (2)O(N*log(N))

      若当前枚举到i,则i为i*k的一个约数(k >= 0),dp[i*k]++。

      先枚举i,再枚举i*k,复杂度 = n * (1 + 1/2 + 1/3 + 1/4 +...+ 1/n) = N*log(N)

  (3)O(N)

      转化问题:

        设g(x) = [1,n]中x倍数的个数。

        ans = ∑ g(i)

      显然有g(x) = floor(n/x),O(1)算出。

      枚举i,ans += g(i),复杂度O(N)。

  (4)O(sqrt(N))

      延续(3)的思路。

      显然,对于数列g(x),你会发现有一些区间内的数都是一样的。

      那么哪些g(x)会是相同的呢?

        假如现在枚举到了i。

        由于 g(x) = floor(n/i)

        所以有 n/i = g(i) ... P(余数)

        那么现在想求出这段区间的末尾位置j,即求出满足n/j = g(i) ... P,显然当P(余数)越接近0时,j越大。

        所以当P约等于0时,末尾位置j = floor(n/g(i)) = floor(n/floor(n/i))。

        所以下一个区间的起始位置为j+1。

      所以对于处理的每个i,要将ans += (j-i+1) * g(i)

      复杂度 = 不同的floor(n/i)的个数 = sqrt(N)

  看下效率差距。。。(从下往上为算法2,3,4)

  

AC Code(2):

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1000005 using namespace std; int n;
int ans=;
int dp[MAX_N]; int main()
{
cin>>n;
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j+=i)
{
dp[j]++;
}
ans+=dp[i];
}
cout<<ans<<endl;
}

AC Code(3):

 #include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; int n;
int ans=; int main()
{
cin>>n;
for(int i=;i<=n;i++)
{
ans+=n/i;
}
cout<<ans<<endl;
}

AC Code(4):

 #include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; int n;
int ans=; int main()
{
cin>>n;
for(int i=,j=;i<=n;i=j+)
{
j=n/(n/i);
ans+=(j-i+)*(n/i);
}
cout<<ans<<endl;
}

BZOJ 1968 [Ahoi2005]COMMON 约数研究:数学【思维题】的更多相关文章

  1. BZOJ 1968: [Ahoi2005]COMMON 约数研究

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2032  Solved: 1537[Submit] ...

  2. BZOJ 1968: [Ahoi2005]COMMON 约数研究 水题

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  3. BZOJ 1968: [Ahoi2005]COMMON 约数研究(新生必做的水题)

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2351  Solved: 1797 [Submi ...

  4. bzoj 1968: [Ahoi2005]COMMON 约数研究【枚举】

    枚举约数,加上有这个约数的数个数 #include<iostream> #include<cstdio> using namespace std; const int N=10 ...

  5. 1968: [Ahoi2005]COMMON 约数研究

    #include<cstdio> #include<iostream> #define M 1000008 using namespace std; long long tot ...

  6. [BZOJ1968][AHOI2005]COMMON约数研究 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968 直接计算每个因子的贡献就可以了. $Ans=\sum_{i=1}^n[\frac{n ...

  7. bzoj千题计划170:bzoj1968: [Ahoi2005]COMMON 约数研究

    http://www.lydsy.com/JudgeOnline/problem.php?id=1968 换个角度 一个数可以成为几个数的约数 #include<cstdio> #incl ...

  8. [Ahoi2005]COMMON 约数研究 【欧拉线性筛的应用】

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2939  Solved: 2169 [Submi ...

  9. BZOJ1968 [Ahoi2005]COMMON 约数研究

    Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input ...

随机推荐

  1. 八数码(IDA*算法)

    八数码 IDA*就是迭代加深和A*估价的结合 在迭代加深的过程中,用估计函数剪枝优化 并以比较优秀的顺序进行扩展,保证最早搜到最优解 需要空间比较小,有时跑得比A*还要快 #include<io ...

  2. css ul dl dt 表格分页 文本框样式

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  3. reactJs 基础

    react不是一个完整的mvc,mvvm框架. react跟web components 不冲突  背景原理:基于React进行开发时所有的DOM构造都是通过虚拟DOM进行,每当数据变化时,React ...

  4. 菜鸟崛起 Ajax

    AJAX概述 1 什么是AJAX AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进 ...

  5. 卸载MySQL以及重装卡到Start Services的解决办法(亲测有效,刚重装成功)

    卸载MySQL以及重装卡到Start Services的解决办法 重装系统永远是个好办法,但是对于我们程序员来说只要一想到电脑上的环境变量和其他的配置就蔫了.所以这一条就当作是废话吧. 一般来说装My ...

  6. HTML页面常用的编辑框

    public class FormInputUtil { /** * 获取表单中的InputText * * @param name * @param rs * @return */ public s ...

  7. flask中的CBV和FBV

    flask中CBV使用 from flask import Flask, views app = Flask(__name__) class Login(views.MethodView): meth ...

  8. [USACO1.5]数字三角形 Number Triangles

    题目描述 观察下面的数字金字塔. 写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大.每一步可以走到左下方的点也可以到达右下方的点. 7 3 8 8 1 0 2 7 4 4 4 5 ...

  9. poj_2084_Game of Connections

    This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1 ...

  10. ArrayList调用remove(int index)抛出UnsupportedOperationException问题分析以及解决记录

    使用Arrays转数组成为List后,不能调用add(...)和remove(...)方法,此时如果调用就会抛出UnsupportedOperationException异常 原因 其实Arrays. ...