【CF24D】Broken Robot (DP+高斯消元)
题目链接
题意:给定一个\(n\times m\)的矩阵,每次可以向→↓←移动一格,也可以原地不动,求从\((x,y)\)到最后一行的期望步数。
此题标签\(DP\)
看到上面这个肯定会想到
方法一: \(f[i][j]\)表示表示从\((x,y)\)走到\((i,j)\)的期望步数,正推
方法二: \(f[i][j]\)表示从\((i,j)\)走到最后一行的期望步数,倒推
事实上,方法二更优秀。
因为如果用方法一,我们要求的答案就是\(\frac{\sum f[\text{最后一行}][\text{每个位置}]}{m}\)
而如果我们用方法二,答案就是\(f[x][y]\),省时又省力。
所以我们就用方法二。
然而上面两种方案都是有后效性的,因为\(f[i][j]\)取决与\(f[i-1][j](\text{或}f[i+1][j],f[i][j-1],f[i][j+1]\)甚至他本身,我们无法确定一个正确的递推顺序。
这时就要用\(DP\)套高斯消元了。
显然\(f[\text{最后一行}][\text{每个位置}]\)都为\(0\),于是枚举行,从\(n-1\)枚举到\(x\)。
先把状态转移方程写出来。
\(f[i][j]=\begin{cases}\ \frac{1}{3}(f[i][j]+f[i][j+1]+f[i+1][j])\ (j=1)\\ \frac{1}{4}(f[i][j-1]+f[i][j]+f[i][j+1]+f[i+1][j])\ (j!=1,j!=m)\\ \frac{1}{3}(f[i][j]+f[i][j-1]+f[i+1][j])\ (j=m)\end{cases}\)
可以发现,方程中\(f[i+1][j]\)固定出现,而这是我们已知的(最后一行均为\(0\),一行一行往上倒推),于是考虑移项。
以\(j=1\)为例,
\]
移项得
\]
于是我们便得到了\(m\)个一次方程,用高斯消元即可解出每一行所有的\(f\)值。
高斯消元理论复杂度\(O(n^3)\),但是我们仔细观察本题,每行事实上只有两个数需要消元,所以我们可以在\(O(m)\)的时间复杂度里完成高斯消元,算法总时间复杂度\(O(nm^2)\)。
#include <cstdio>
#include <cstdlib>
const int MAXN = 1010;
double f[MAXN][MAXN];
double M[MAXN][MAXN];
int n, m, x, y;
void Gauss(){ //高斯消元
for(int i = 1; i <= m; ++i){
double tmp = 1.0 / M[i][i]; //系数化一
M[i][i] *= tmp; M[i][m + 1] *= tmp;
if(i == m) break;
M[i][i + 1] *= tmp;
tmp = M[i + 1][i] / M[i][i]; //下一行消掉该元
M[i + 1][i] -= tmp * M[i][i]; M[i + 1][i + 1] -= tmp * M[i][i + 1]; M[i + 1][m + 1] -= tmp * M[i][m + 1];
}
for(int i = m - 1; i; --i) M[i][m + 1] -= M[i + 1][m + 1] * M[i][i + 1]; //回代
}
int main(){
scanf("%d%d%d%d", &n, &m, &x, &y);
for(int i = n - 1; i >= x; --i){
M[1][1] = -1.0 + 1.0 / 3; //
M[1][2] = 1.0 / 3;
for(int j = 2; j < m; ++j){
M[j][m + 1] = (-f[i + 1][j]) / 4.0 - 1;
M[j][j] = -1.0 + 1.0 / 4;
M[j][j - 1] = M[j][j + 1] = 1.0 / 4;
}
M[m][m] = -1.0 + 1.0 / 3;
M[m][m - 1] = 1.0 / 3;
if(m == 1) M[1][1] = -1.0 + 1.0 / 2;
M[1][m + 1] = (-f[i + 1][1]) / 3.0 - 1;
M[m][m + 1] = (-f[i + 1][m]) / 3.0 - 1; //构建矩阵
if(m == 1) M[m][m + 1] = (-f[i + 1][m]) / 2.0 - 1; //特判$m=1$的情况
Gauss();
for(int j = 1; j <= m; ++j)
f[i][j] = M[j][m + 1];
}
printf("%.10lf", f[x][y]);
return 0;
}
【CF24D】Broken Robot (DP+高斯消元)的更多相关文章
- $CF24D\ Broken Robot\ DP+$高斯消元
Luogu Description 你收到的礼物是一个非常聪明的机器人,行走在一块长方形的木板上.不幸的是,你知道它是坏的,表现得相当奇怪(随机).该板由n行和m列的单元格组成.机器人最初是在i行和j ...
- codeforces 24d Broken robot 期望+高斯消元
题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望 ...
- BZOJ 3270: 博物馆 [概率DP 高斯消元]
http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...
- BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- LightOJ - 1151概率dp+高斯消元
概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到 ...
- 【BZOJ3640】JC的小苹果 概率DP+高斯消元
[BZOJ3640]JC的小苹果 Description 让我们继续JC和DZY的故事. “你是我的小丫小苹果,怎么爱你都不嫌多!” “点亮我生命的火,火火火火火!” 话说JC历经艰辛来到了城市B,但 ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- BZOJ3270 博物館 概率DP 高斯消元
BZOJ3270 博物館 概率DP 高斯消元 @(XSY)[概率DP, 高斯消元] Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博 ...
随机推荐
- jq 一个强悍的json格式化查看工具
本文来自网易云社区 作者:娄超 在web 2.0时代json这种直观.灵活.高效数据格式基本已经成为一种标准格式,从各种web api,到配置文件,甚至现在连mysql都开始支持json作为数据类型. ...
- java_hdfs之读写文件
package hdfsTest.answer.hdfs; import java.io.IOException; import java.net.URI; //import java.net.URL ...
- spring boot 连接mysql 错误The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or represents more than one
1.spring boot 整合mybatis 连接mysql时错误 The server time zone value 'Öйú±ê׼ʱ¼ä' is unrecognized or repr ...
- C++学习003-#define 自定义宏
C++中可以用#define来定义自定义的宏 也可以用使用#define来定义常量 但是#define只是简单的替换,在定义常量的时候没有语法检测 所以在C++定义常量可以使用 Const修饰 #d ...
- python接口自动化: CAS系统验证,自动完成登录并获取token,遇到302请求重定向设置(requests模块 allow_redirects=False)即可
import requestsimport re import requests import re class Crm_token(object): try: username=int(input( ...
- Leetcode代码补全——链表
通过补全代码可以更深刻的体会到,链表就是一个存储方式,通过一单元的存储指向下一单元,而查看单元内容通过头部开始的指针依次遍历.这是leetcode里融合两个链表的题目,具体代码如下: #encodin ...
- Cassandra 常见错误索引
类型错误 类型错误调试的技巧 有时候,类型错误提示比较不友好,比如不知道哪个字段出错. 在php中可以用 //过滤几个数据进行操作,逐个检查,或者折半查找错误 $data = array_splice ...
- Java 访问权限控制 小结
总所周知,Java提供了访问权限修饰词,以供类库开发人员向客户端程序员指明哪些是可用的,哪些是不可用的. 访问权限控制的等级,从最大权限到最小权限依次为:public.protected.包访问权限( ...
- 软工实践 - 第二十六次作业 Beta 冲刺(4/7)
队名:起床一起肝活队 组长博客:https://www.cnblogs.com/dawnduck/p/10124816.html 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过 ...
- python的运算符及优先级与python的表达式
什么是运算符 >>在Python中,我们对一个或者是多个数字或字符串进行操作的符号 运算符有哪些 >>在Python中我们常见的运算符有:+.-.*./.**.<.> ...