考试的时候由于总是搞这道题导致爆零~~~~~(神™倒序难度.....)

考试的时候想着想着想用状压,但是觉得不行又想用区间dp,然而正解是状压着搞区间,这充分说明了一件事,状压不是只是一种dp而是一种用用二进制表示状态的方法,之前打的状压dp只不过是在线性dp的时候用了这种方法。

我们发现对于一个固定长度的区间他最后缩成的位数是一定的(且属于1~k-1),而且最后的每一位的数字的来源相互独立因为他们分别完全展开之后无交。那么我们按照区间dp的一般思路,扩展长度转移状态,我们将转移来源分为两部分,设mid为中间点,mid左边贡献1位,mid右边贡献其他位,那么就可以转移了。

对于len∈[2,k-1],我们 f[i][j][s]=max(f[i][mid][s>>1],f[mid+1][j][s&1]),(f[i][j][s]在[i,j]区间上最后状态为s的最大收益)

对于len==1,我们知道出来长度为1时他的1都是缩出来的因此我们要先处理在这里(1<<k)的状态最后根据c和w再转移

注意枚举顺序!!!

#include <cstdio>
typedef long long LL;
const int MAXN=;
LL f[MAXN][MAXN][MAXN];
int n,k,full;
int len[MAXN];
int a[MAXN],c[MAXN],w[MAXN];
const LL Inf=2305843009213693952LL;
inline LL Max(LL x,LL y){
return x>y?x:y;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<k;i++)len[i]=i;
for(int i=k;i<=n;i++)len[i]=len[i-k+];
for(int i=;i<=n;i++)
scanf("%1d",&a[i]),f[i][i][a[i]]=,f[i][i][a[i]^]=-Inf;
for(int i=;i<(<<k);i++)
scanf("%d%d",&c[i],&w[i]);
for(int l=;l<=n;l++){
full=(<<(len[l]==?k:len[l]));
for(int i=,r=l;r<=n;i++,r++){
for(int j=;j<full;j++){
f[i][r][j]=-Inf;
for(int mid=r-;mid>=i;mid-=k-)
f[i][r][j]=Max(f[i][r][j],f[i][mid][j>>]+f[mid+][r][j&]);
}
if(len[l]==){
LL g[]={,};
for(int j=;j<full;j++)
g[c[j]]=Max(g[c[j]],f[i][r][j]+w[j]);
f[i][r][]=g[];
f[i][r][]=g[];
}
}
}
full=(<<len[n]);
LL ans=-Inf;
for(int i=;i<full;i++)
ans=Max(ans,f[][n][i]);
printf("%lld",ans);
}

【BZOJ 4565】 [Haoi2016]字符合并 区间dp+状压的更多相关文章

  1. 『字符合并 区间dp 状压dp』

    字符合并 Description 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这 k 个字符确定.你需要求出你能获得的最大分 ...

  2. 【BZOJ】4565: [Haoi2016]字符合并

    4565: [Haoi2016]字符合并 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 690  Solved: 316[Submit][Status ...

  3. [BZOJ4565][HAOI2016]字符合并(区间状压DP)

    https://blog.csdn.net/xyz32768/article/details/81591955 首先区间DP和状压DP是比较明显的,设f[L][R][S]为将[L,R]这一段独立操作最 ...

  4. 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)

    传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...

  5. BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]

    传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...

  6. BZOJ4565 HAOI2016字符合并(区间dp+状压dp)

    设f[i][j][k]为将i~j的字符最终合并成k的答案.转移时只考虑最后一个字符是由哪段后缀合成的.如果最后合成为一个字符特殊转移一下. 复杂度看起来是O(n32k),实际常数极小达到O(玄学). ...

  7. BZOJ 2004: [Hnoi2010]Bus 公交线路 [DP 状压 矩阵乘法]

    传送门 题意: $n$个公交站点,$k$辆车,$1...k$是起始站,$n-k+1..n$是终点站 每个站只能被一辆车停靠一次 每辆车相邻两个停靠位置不能超过$p$ 求方案数 $n \le 10^9, ...

  8. BZOJ 1226: [SDOI2009]学校食堂Dining [DP 状压]

    题意: $n$个人排队打饭,第$i$个人口味$a_i$,能容忍最多身后第$b_i$个人先打饭. 先后两人$i,j$做饭时间为$a_i & a_j - a_i | a_j$ 求最少时间 一开始想 ...

  9. BZOJ 1097: [POI2007]旅游景点atr [DP 状压 最短路]

    传送门 题意: 一个无向图,从$1$到$n$,要求必须经过$2,3,...,k+1$,给出一些限制关系,要求在经过$v \le k+1$之前必须经过$u \le k+1$ 求最短路 预处理出$1... ...

随机推荐

  1. PHP入门笔记--基础语法二

    一.函数 自定义函数 任何有效的 PHP 代码都有可能出现在函数内部,甚至包括其它函数和类定义. <?php function foo() { function bar() { echo &qu ...

  2. ListView学习

    ListView类 常用的基本属性 FullRowSelect:设置是否行选择模式.(默认为false)提示:只有在Details视图,该属性有效. GridLines:设置行和列之间是否显示网格线. ...

  3. 分支push不上去的问题

    还原一下现场,我在自己的项目里面,从master里面checkout的一个分支,当我在我这个分支里面进行 push代码的操作,我突然发现我的代码不能执行push的操作,如图 这个原因是由于远端的仓库没 ...

  4. PHP.45-TP框架商城应用实例-后台20-权限管理-RBAC表构造与代码生成

    权限管理 三张主表{p39_privilege(权限).p39_role(角色).p39_admin(管理)} 两张中间表{p39_role_pri(角色-权限).p39_admin_role(管理- ...

  5. C#的委托Delegate

    一.委托基础 1.什么是委托 委托(Delegate) 是存有对某个方法的引用的一种引用类型变量,用关键字delegate申明,实现相同返回值和参数的函数的动态调用,提供了对方法的抽象. 委托(Del ...

  6. 【转】让Moodle支持多个域名

    默认情况下,moodle仅能绑定一个域名.但是由于学校网络分内网和外网,总希望如果是外网访问的,用外网的域名,用内网访问的,就转到内网的ip.这样访问的速度会更快一些,也减低对防火墙的压力.尤其是当外 ...

  7. VINS紧耦合优化公式及代码解析

    1.首先确定待优化的状态变量 对应代码,优化参数为: Vector3d Ps[(WINDOW_SIZE + )];(平移向量) Vector3d Vs[(WINDOW_SIZE + )];(速度) M ...

  8. itop-4412开发板学习-内核信号量

    1. 翻翻书看下,linux提供两种信号量,内核信号量,由内核控制路径使用,System V IPC信号量,由用户态进程使用.下面的就是内核部分的信号量.内核信号量类似于自旋锁,当锁关闭着时,不允许内 ...

  9. Android Studio 使用小结

    从去年(2013年5月)Google发布Android Studio 0.1.0版本,到如今已经一年多了,已经升级到0.8.6 Beta版 ,从刚开始大家报怨bug多,编译困难,到如今已经基本趋于稳定 ...

  10. Selenium搭配TestNG

    用Maven来构建TestNG依赖: <dependency> <groupId>org.testng</groupId> <artifactId>te ...