从零开始学习MXnet(三)之Model和Module
在我们在MXnet中定义好symbol、写好dataiter并且准备好data之后,就可以开开心的去训练了。一般训练一个网络有两种常用的策略,基于model的和基于module的。今天,我想谈一谈他们的使用。
一、Model
按照老规矩,直接从官方文档里面拿出来的代码看一下:
# configure a two layer neuralnetwork
data = mx.symbol.Variable('data')
fc1 = mx.symbol.FullyConnected(data, name='fc1', num_hidden=128)
act1 = mx.symbol.Activation(fc1, name='relu1', act_type='relu')
fc2 = mx.symbol.FullyConnected(act1, name='fc2', num_hidden=64)
softmax = mx.symbol.SoftmaxOutput(fc2, name='sm')
# create a model using sklearn-style two-step way
#创建一个model
model = mx.model.FeedForward(
softmax,
num_epoch=num_epoch,
learning_rate=0.01)
#开始训练
model.fit(X=data_set)
具体的API参照http://mxnet.io/api/python/model.html。
然后呢,model这部分就说完了。。。之所以这么快主要有两个原因:
1.确实东西不多,一般都是查一查文档就可以了。
2.model的可定制性不强,一般我们是很少使用的,常用的还是module。
二、Module
Module真的是一个很棒的东西,虽然深入了解后,你会觉得“哇,好厉害,但是感觉没什么鸟用呢”这种想法。。实际上我就有过,现在回想起来,从代码的设计和使用的角度来讲,Module确实是一个非常好的东西,它可以为我们的网络计算提高了中级、高级的接口,这样一来,就可以有很多的个性化配置让我们自己来做了。
Module有四种状态:
1.初始化状态,就是显存还没有被分配,基本上啥都没做的状态。
2.binded,在把data和label的shape传到Bind函数里并且执行之后,显存就分配好了,可以准备好计算能力。
3.参数初始化。就是初始化参数
3.Optimizer installed 。就是传入SGD,Adam这种optimuzer中去进行训练
先上一个简单的代码:
import mxnet as mx
# construct a simple MLP
data = mx.symbol.Variable('data')
fc1 = mx.symbol.FullyConnected(data, name='fc1', num_hidden=128)
act1 = mx.symbol.Activation(fc1, name='relu1', act_type="relu")
fc2 = mx.symbol.FullyConnected(act1, name = 'fc2', num_hidden = 64)
act2 = mx.symbol.Activation(fc2, name='relu2', act_type="relu")
fc3 = mx.symbol.FullyConnected(act2, name='fc3', num_hidden=10)
out = mx.symbol.SoftmaxOutput(fc3, name = 'softmax')
# construct the module
mod = mx.mod.Module(out)
mod.bind(data_shapes=train_dataiter.provide_data,
label_shapes=train_dataiter.provide_label)
mod.init_params()
mod.fit(train_dataiter, eval_data=eval_dataiter,
optimizer_params={'learning_rate':0.01, 'momentum': 0.9},
num_epoch=n_epoch)
分析一下:首先是定义了一个简单的MLP,symbol的名字就叫做out,然后可以直接用mx.mod.Module来创建一个mod。之后mod.bind的操作是在显卡上分配所需的显存,所以我们需要把data_shapehe label_shape传递给他,然后初始化网络的参数,再然后就是mod.fit开始训练了。这里补充一下。fit这个函数我们已经看见两次了,实际上它是一个集成的功能,mod.fit()实际上它内部的核心代码是这样的:
for epoch in range(begin_epoch, num_epoch):
tic = time.time()
eval_metric.reset()
for nbatch, data_batch in enumerate(train_data):
if monitor is not None:
monitor.tic()
self.forward_backward(data_batch) #网络进行一次前向传播和后向传播
self.update() #更新参数
self.update_metric(eval_metric, data_batch.label) #更新metric if monitor is not None:
monitor.toc_print() if batch_end_callback is not None:
batch_end_params = BatchEndParam(epoch=epoch, nbatch=nbatch,
eval_metric=eval_metric,
locals=locals())
for callback in _as_list(batch_end_callback):
callback(batch_end_params)
正是因为module里面我们可以使用很多intermediate的interface,所以可以做出很多改进,举个最简单的例子:如果我们的训练网络是大小可变怎么办? 我们可以实现一个mutumodule,基本上就是,每次data的shape变了的时候,我们就重新bind一下symbol,这样训练就可以照常进行了。
总结:实际上学一个框架的关键还是使用它,要说诀窍的话也就是多看看源码和文档了,我写这些博客的目的,一是为了记录一些东西,二是让后来者少走一些弯路。所以有些东西不会说的很全。。
从零开始学习MXnet(三)之Model和Module的更多相关文章
- 从零开始学习jQuery (三) 管理jQuery包装集
本系列文章导航 从零开始学习jQuery (三) 管理jQuery包装集 一.摘要 在使用jQuery选择器获取到jQuery包装集后, 我们需要对其进行操作. 本章首先讲解如何动态的创建元素, 接着 ...
- 从零开始学习MXnet(五)MXnet的黑科技之显存节省大法
写完发现名字有点拗口..- -# 大家在做deep learning的时候,应该都遇到过显存不够用,然后不得不去痛苦的减去batchszie,或者砍自己的网络结构呢? 最后跑出来的效果不尽如人意,总觉 ...
- 从零开始学习MXnet(一)
最近工作要开始用到MXnet,然而MXnet的文档写的实在是.....所以在这记录点东西,方便自己,也方便大家. 我觉得搞清楚一个框架怎么使用,第一步就是用它来训练自己的数据,这是个很关键的一步. 一 ...
- 从零开始学习MXnet(四)计算图和粗细粒度以及自动求导
这篇其实跟使用MXnet的关系不大,但对于我们理解深度学习的框架设计还是很有帮助的. 首先还是对promgramming models的一个简单介绍,这个东西实际上是在编译里面经常出现的东西,我们在编 ...
- 从零开始学习Vue(三)
我们从一个例子来学习组件,vuejs2.0实战:仿豆瓣app项目,创建自定义组件tabbar 这个例子用到其他组件,对于初学者来说,一下子要了解那么多组件的使用,会变得一头雾水.所以我把这个例子改写了 ...
- 从零开始学习MXnet(二)之dataiter
MXnet的设计结构是C++做后端运算,python.R等做前端来使用,这样既兼顾了效率,又让使用者方便了很多,完整的使用MXnet训练自己的数据集需要了解几个方面.今天我们先谈一谈Data iter ...
- oracle从零开始学习笔记 三
高级查询 随机返回5条记录 select * from (select ename,job from emp order by dbms_random.value())where rownum< ...
- 从零开始学习jQuery(转)
本系列文章导航 从零开始学习jQuery (一) 开天辟地入门篇 从零开始学习jQuery (二) 万能的选择器 从零开始学习jQuery (三) 管理jQuery包装集 从零开始学习jQuery ( ...
- 从零开始学习jQuery
转自:http://www.cnblogs.com/zhangziqiu/archive/2009/04/30/jQuery-Learn-1.html 本系列文章导航 从零开始学习jQuery (一) ...
随机推荐
- pyc是个什么鬼?
1.Python是一门解释型语音? 我初学Python时,听到的关于Python的第一句话就是,Python是一门解释型语音,我就这样一直相信下去,知道发现了*.pyc文件的存在.如果是解释型语音,那 ...
- 文件 I/O字符流
import java.io.File; import java.io.FileReader; import java.io.FileWriter; import java.io.IOExceptio ...
- Black And White (DFS 训练题)
G - Black And White ================================================================================ ...
- python2.7入门---文件I/O&简单用户交互
这篇文章开始之前,我们先来看下python中的输出方法.最简单的输出方法是用print语句,你可以给它传递零个或多个用逗号隔开的表达式.此函数把你传递的表达式转换成一个字符串表达式,并将结果写 ...
- PHP.46-TP框架商城应用实例-后台21-权限管理-权限和角色的关系
权限和角色的关系 权限功能 角色功能 权限与角色的关联要通过权限-角色表进行{多对多} /********* 角色-权限表 *********/ drop if exists p39_role_pri ...
- java程序——从命令行接收多个数字,求和之后输出结果
命令行参数都是字符串,必须先将其转化为数字,才能相加.以下是流程图,源代码和输出结果. 流程图: 源代码: import java.util.Scanner; public class Test { ...
- fsync体会
看这个链接:http://www.postgresql.org/docs/9.1/static/runtime-config-wal.html 是这样说的: fsync (boolean) If th ...
- 谷歌面试官经典作品(CTCI)目录
1.1 判断一个字符串中的字符是否唯一 1.2 字符串翻转 1.3 去除字符串中重复字符 1.8 利用已知函数判断字符串是否为另一字符串的子串 2.1 从链表中移除重复结点 2.2 实现一个算法从一个 ...
- (转载)深入super,看Python如何解决钻石继承难题
1. Python的继承以及调用父类成员 python子类调用父类成员有2种方法,分别是普通方法和super方法 假设Base是基类 class Base(object): def __init_ ...
- iOS-Debug Symbol(调试符号)
Debug Symbol(调试符号) 编译警告 从svn下载下来的文件,到处都是编译警告,看着不爽,找下原因,没想到还是一条大鱼 warning: (i386) /UsersLibrary/Devel ...