题目


分析

如果令 \(u=pj,v=qj\) ,那么本质上就是让 \(gcd(i,u,v)==1\)

那就是 \(\sum_{i=1}^n\sum_{u=1}^n\sum_{v=1}^n[gcd(i,u,v)==1]\)

莫比乌斯反演就可以得到 \(\sum_{T=1}^n\mu(T)\left(\left\lfloor\frac{n}{T}\right\rfloor\right)^3\)

这个杜教筛就可以了


代码

#include <cstdio>
#include <unordered_map>
#define rr register
using namespace std;
const int N=10000011,mod=998244353;
unordered_map<int,int>uk;
int prime[N],v[N],mu[N],n,Cnt,ans;
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline void Pro(int n){
mu[1]=1;
for (rr int i=2;i<=n;++i){
if (!v[i]) prime[++Cnt]=v[i]=i,mu[i]=mod-1;
for (rr int j=1;j<=Cnt&&prime[j]<=n/i;++j){
v[i*prime[j]]=prime[j];
if (i%prime[j]==0) break;
mu[i*prime[j]]=mod-mu[i];
}
}
for (rr int i=2;i<=n;++i) mu[i]=mo(mu[i-1],mu[i]);
}
inline signed Smu(int n){
if (n<=N-11) return mu[n];
if (uk[n]) return uk[n];
rr int ans=0;
for (rr int l=2,r;l<=n;l=r+1)
r=n/(n/l),ans=mo(ans,1ll*(r-l+1)*Smu(n/l)%mod);
return uk[n]=mo(mod-ans,1);
}
signed main(){
Pro(N-11),scanf("%d",&n);
for (rr int l=1,r;l<=n;l=r+1){
rr int t=1ll*(n/l)*(n/l)%mod*(n/l)%mod;
r=n/(n/l),ans=mo(ans,1ll*mo(Smu(r),mod-Smu(l-1))*t%mod);
}
return !printf("%d",ans);
}

#莫比乌斯反演,杜教筛#洛谷 6055 [RC-02] GCD的更多相关文章

  1. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  2. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  3. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  4. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  5. 「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛

    题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  ...

  6. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  7. NOI 2016 循环之美 (莫比乌斯反演+杜教筛)

    题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接 任何形容词也不够赞美这一道神题 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j) ...

  8. 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)

    点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...

  9. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  10. luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)

    题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...

随机推荐

  1. 在Winform界面中使用自定义控件,丰富界面的效果处理

    我们在<SqlSugar开发框架>中,Winform界面开发部分往往也用到了自定义的用户控件,对应一些特殊的界面或者常用到的一些局部界面内容,我们可以使用自定义的用户控件来提高界面的统一性 ...

  2. CXP2.0的相机是否可以使用CXP1.1的Grabber

    可以 答案是肯定的. 目前CXP共有2个发布版本: 2011年发布CXP1.1 2021年发布CXP2.1,向后兼容,新标准增加了同步功能.数据率放大了一倍. 只要是符合CXP标准.接插件匹配,那么C ...

  3. 【Azure IoT Hub】从设备端如何向IOT发送海量数据,可以使用从设备到IoT连接的直接传输吗?如何把IoT Hub中的数据存储到Azure Storage中?

    问题描述 IoT Hub 从设备端如何向IOT发送海量数据,可以使用从设备到IOT连接的直接传输吗?还是需要另外开启连接.另外,消息路由和上传文件使用的连接是否就是设备到IOT建立的连接?还是需要额外 ...

  4. 字典嵌套列表 与 列表嵌套字典 导出为csv 的方法

    字典嵌套列表 导出csv {'rank': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '1 ...

  5. 从 HPC 到 AI:探索文件系统的发展及性能评估

    随着 AI 技术的迅速发展,模型规模和复杂度以及待处理数据量都在急剧上升,这些趋势使得高性能计算(HPC)变得越来越必要.HPC 通过集成强大的计算资源,比如 GPU 和 CPU 集群,提供了处理和分 ...

  6. .Net下的简易Http请求调用(Post与Get)

    http请求调用是开发中经常会用到的功能.在内,调用自有项目的Web Api等形式接口时会用到:在外,调用一些第三方功能接口时,也会用到,因为,这些第三方功能往往是通过http地址的形式提供的,比如: ...

  7. ETL工具-KETTLE教程实例实战2----环境介绍

    一.整体结构图 Kettle 是"Kettle E.T.T.L. Envirnonment"只取首字母的缩写,这意味着它被设计用来帮助你实现你的ETTL 需要:抽取.转换.装入和加 ...

  8. const用法及与constexpr区别总结

    1.用const修饰函数的参数 参数是值传递 由于函数将自动产生临时变量复制该参数,该参数无需保护,没必要用const 参数是指针传递或者引用传递 const修饰的指针或引用所指向的值不可变.如果该参 ...

  9. 25_H.264编码

    本文主要介绍一种非常流行的视频编码:H.264. 计算一下:10秒钟1080p(1920x1080).30fps的YUV420P原始视频,需要占用多大的存储空间? (10 * 30) * (1920 ...

  10. Java 学习分享

    建议语言入门可以先看看视频,学习网站可以是github,极客时间,infoQ等,然后去看书深入研究学习.学习最有效的方式一定是自己动手写代码,而不是看别人的代码,自己下载Intelli Idea多敲敲 ...