Data-driven Automatic Treatment Regimen Development and Recommendation

Authors: Leilei Sun, Chuanren Liu, Chonghui Guo, Hui Xiong, Yanming Xie

Keywords: Treatment Regimen; Treatment Recommendation, Electronic Medical Records; Temporal Sets.

KDD’16 大连理工大学 (Dalian University of Technology),卓克索大学 (Drexel University),中国中医科学院 (China Academy of China Medical Sciences)

论文链接:https://dl.acm.org/doi/pdf/10.1145/2939672.2939866


0. 总结

本文方法比较清晰,专注于脑梗塞这一种疾病,给新进入系统的病人推荐治疗方案。但假设比较强,是治疗方案推荐的很好的初步尝试。

数据是在中国收集的,不知道相关数据集和代码是否已经公开?

1.研究目标

根据历史病历数据,对患者和治疗方案分别进行分类,并提取出一些典型的治疗方案。对新患者,根据患者基本信息和诊断信息,推荐相应的治疗方案,辅助医疗决策,提高治愈率和治疗有效性。

2.问题背景

电子病历信息没有被充分利用,医疗资源分布不均,大数据手段可以提高医疗效率,提高整体医疗水平。

3. 问题定义-EMR 的内容

本文用到的电子医疗记录(Electronic Medical Records, EMRs)主要包含以下五种信息:

3.1 人口统计信息 Demographic Information

包含患者的基本信息,如性别、年龄、家庭住址、种族、受教育程度等信息。

3.2 诊断信息 Diagnostic Information

包含疾病名称和严重程度

3.3 医嘱 Doctor Order

包含药物名称、使用方式、剂量、频率、开始日期和结束日期。

3.4 治疗方案 Treatment

治疗方案是在医嘱之上整理出来的,记录患者每天接受了哪些治疗。

进一步,可以将患者的病程分为几个阶段,每个阶段都有几个治疗方案,其中记录了患者接受了哪些治疗,分别接受了几次(这里就不记录这几次治疗具体发生的日期,而是只记录次数)。

3.5 结果 Outcome

结果指患者出院时医生对患者的状态评估,可以分为“治愈(cured)“,“改善(improved)”,“无效(ineffective)”,“死亡(dead)”。

上面五种信息中,前两个(基本信息和诊断信息)可以视为条件,第四个(治疗方案)可以视为干预变量,最后一个(结果)可以视为目标。

4. 方法

4.1 治疗方案相似度度量

总体思路:每个患者的治疗方案可以被分为多个阶段的治疗方案,每个阶段的治疗方案包含用了哪些药物,以及服用方式、剂量和使用次数。在相似度度量时,首先度量各个对应阶段之间的相似度(如果阶段数量不一样怎么办?),然后再整合得到整体相似度。

  • 治疗方案相似度首先被拆分为药物之间的相似度——相同名称的药物会有非零相似度,再根据服用方式、剂量和频率来计算一个0到1之间的相似度数值。
  • 两个分阶段治疗方案之间的相似度变为两个集合之间的相似度度量,其中集合元素之间的相似度已知。
    • 本文提出一种矩阵,将元素之间的相似度加权组合为集合之间的相似度。
  • 得到各个阶段治疗方案的相似度之后,再加权平均得到两个治疗方案的整体相似度

4.2 治疗方案聚类

基于治疗方案之间的相似度,本文提出一种基于密度峰值的聚类算法,可以得到治疗方案的聚类中心。

4.3 提取典型治疗方案

由于本场景的特殊性,聚类中心的治疗方案也无法完全代表这类每个类别,仍需进一步处理。

具体来说,就是看一下哪些药物用的比较多,再提取一下典型的使用剂量、使用方式和持续时间等信息。

4.4 治疗方案推荐

对病人也进行分类(决策树),每个叶子节点认为是一个类型的患者,然后看一下这些患者使用哪个典型治疗方案比较多,就作为这个叶子节点的推荐方案。

5. 实验

5.1 数据

数据来自中国14家三甲医院,分布在北京,石家庄,深圳,济南,长春,福州和西安。

实验专注于脑梗塞的药物推荐。

收集了2.7万的患者数据,医嘱数量100万。

5.2 提取典型治疗方案

其中使用了1090种药物,但大多数药物都是用于治疗其他疾病的。本文选取了138种最相关的药物,有36万医嘱包含这些药物,平均每个患者13个。

治疗过程分为四个阶段:前24小时、2-3天、4-7天、8-14天。

最终提取出四种典型的治疗方案

5.3 治疗方案推荐

对病人进行分类,分了17个类别。每个类别找一个治疗效果最好的(不一定是使用最多的)作为推荐结果。

5.4 推荐效果评估

由于每个类别都找到了统计上治疗效果最好的治疗方案,假设这些治疗方案推广到这个类别上的所有患者,再假设推广到其他患者身上之后仍然有这么好的治疗效果,计算一下推广之后,总体的治疗有效率和治愈率能提升多少。

【Treatment-Rec 论文阅读】Data-driven Automatic Treatment Regimen Development and Recommendation的更多相关文章

  1. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  2. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  3. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  4. 【医学图像】3D Deep Leaky Noisy-or Network 论文阅读(转)

    文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原 ...

  5. Event StoryLine Corpus 论文阅读

    Event StoryLine Corpus 论文阅读 本文是对 Caselli T, Vossen P. The event storyline corpus: A new benchmark fo ...

  6. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

  7. YOLO 论文阅读

    YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YO ...

  8. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  9. [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks

    [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...

  10. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

随机推荐

  1. 【郝斌C ST】指针 swap问题

    C语言 指针 swap问题 在主函数种实现变量的交换 现在我们把这交换的行为封装进方法中 swap函数确实进行了交换,打印也是10和5了,但是下面a和b的结果还是5和10 - 形参i 和 形参j 并不 ...

  2. 【C】Re04

    一.类型限定符 extern 声明一个变量,extern声明的变量没有存储空间 const 定义一个常量,该常量必须赋值,之后且不允许更改 volatile 防止编译器优化代码??? register ...

  3. MIT6.1810の学习笔记

    webliuのmit.6.828学习笔记 写在前面 本文基于mit/6.828课程,附官方网址. 本文采用的实验环境为2020年版的xv6系统,需要wsl,vscode,docker工具.附环境配置教 ...

  4. 读论文《基于 GA - BP 的汽车行李箱盖内板冲压成形工艺优化》 —— 如何使用AI技术优化模具产业中工件冲压工艺

    最近到了模具公司工作,本来以为身边同事对模具生产和工件生产的流程(大致流程)会比较了解,结果一问才知道基本都是一问三不知,大家都在模具公司工作但是貌似很多人干的和模具生产和工件制造的工作关联性并不强, ...

  5. 使用GPU计算时,单精度float32类型和半精度float16类型运算效率的区别

    最近在看资料时发现写着使用float16 半精度类型的数据计算速度要比float32的单精度类型数据计算要快,因为以前没有考虑过数据类型对计算速度的影响,只知道这个会影响最终的计算结果精度.于是,好奇 ...

  6. vscode 设置窗口菜单栏显示字体大小

    最近换了一块大些的显示屏,发现vscode的窗口字体有些小了,不是很方便,于是研究了一下如何设置vscode的窗口字体大小. 需要注意的是这里的设置是对窗口字体的而不是编辑器的字体. 1 .  通过主 ...

  7. WPF Boolean类型转化器收集 反转转化器

    参考链接 https://stackoverflow.com/questions/534575/how-do-i-invert-booleantovisibilityconverter Boolean ...

  8. [rCore学习笔记 025]分时多任务系统与抢占式调度

    写在前面 本随笔是非常菜的菜鸡写的.如有问题请及时提出. 可以联系:1160712160@qq.com GitHhub:https://github.com/WindDevil (目前啥也没有 本节重 ...

  9. mfc的ClistCtrl控件列的排序

    在网上看了许多排序的方法,都没看懂,初学者的悲剧,然后就自己弄了个,请大家指正. ClistCtrl控件的行带着一个结构体,不过那结构体不好懂,看得眼花缭乱.好多也弄不明白,就自己写了个结构体,把一行 ...

  10. stm32学习之ADC入门

    ADC_SampleTime 用途:在ADC通道配置(ADC_RegularChannelConfig)需要传输的参数. 含义:指两个采样阶段之间的延迟周期数,该参数会影响ADC在采样过程中的性能和准 ...