【Treatment-Rec 论文阅读】Data-driven Automatic Treatment Regimen Development and Recommendation
Data-driven Automatic Treatment Regimen Development and Recommendation
Authors: Leilei Sun, Chuanren Liu, Chonghui Guo, Hui Xiong, Yanming Xie
Keywords: Treatment Regimen; Treatment Recommendation, Electronic Medical Records; Temporal Sets.
KDD’16 大连理工大学 (Dalian University of Technology),卓克索大学 (Drexel University),中国中医科学院 (China Academy of China Medical Sciences)
论文链接:https://dl.acm.org/doi/pdf/10.1145/2939672.2939866
0. 总结
本文方法比较清晰,专注于脑梗塞这一种疾病,给新进入系统的病人推荐治疗方案。但假设比较强,是治疗方案推荐的很好的初步尝试。
数据是在中国收集的,不知道相关数据集和代码是否已经公开?
1.研究目标
根据历史病历数据,对患者和治疗方案分别进行分类,并提取出一些典型的治疗方案。对新患者,根据患者基本信息和诊断信息,推荐相应的治疗方案,辅助医疗决策,提高治愈率和治疗有效性。
2.问题背景
电子病历信息没有被充分利用,医疗资源分布不均,大数据手段可以提高医疗效率,提高整体医疗水平。
3. 问题定义-EMR 的内容
本文用到的电子医疗记录(Electronic Medical Records, EMRs)主要包含以下五种信息:
3.1 人口统计信息 Demographic Information
包含患者的基本信息,如性别、年龄、家庭住址、种族、受教育程度等信息。
3.2 诊断信息 Diagnostic Information
包含疾病名称和严重程度
3.3 医嘱 Doctor Order
包含药物名称、使用方式、剂量、频率、开始日期和结束日期。
3.4 治疗方案 Treatment
治疗方案是在医嘱之上整理出来的,记录患者每天接受了哪些治疗。
进一步,可以将患者的病程分为几个阶段,每个阶段都有几个治疗方案,其中记录了患者接受了哪些治疗,分别接受了几次(这里就不记录这几次治疗具体发生的日期,而是只记录次数)。
3.5 结果 Outcome
结果指患者出院时医生对患者的状态评估,可以分为“治愈(cured)“,“改善(improved)”,“无效(ineffective)”,“死亡(dead)”。

上面五种信息中,前两个(基本信息和诊断信息)可以视为条件,第四个(治疗方案)可以视为干预变量,最后一个(结果)可以视为目标。
4. 方法
4.1 治疗方案相似度度量
总体思路:每个患者的治疗方案可以被分为多个阶段的治疗方案,每个阶段的治疗方案包含用了哪些药物,以及服用方式、剂量和使用次数。在相似度度量时,首先度量各个对应阶段之间的相似度(如果阶段数量不一样怎么办?),然后再整合得到整体相似度。
- 治疗方案相似度首先被拆分为药物之间的相似度——相同名称的药物会有非零相似度,再根据服用方式、剂量和频率来计算一个0到1之间的相似度数值。
- 两个分阶段治疗方案之间的相似度变为两个集合之间的相似度度量,其中集合元素之间的相似度已知。
- 本文提出一种矩阵,将元素之间的相似度加权组合为集合之间的相似度。
- 得到各个阶段治疗方案的相似度之后,再加权平均得到两个治疗方案的整体相似度
4.2 治疗方案聚类
基于治疗方案之间的相似度,本文提出一种基于密度峰值的聚类算法,可以得到治疗方案的聚类中心。
4.3 提取典型治疗方案
由于本场景的特殊性,聚类中心的治疗方案也无法完全代表这类每个类别,仍需进一步处理。
具体来说,就是看一下哪些药物用的比较多,再提取一下典型的使用剂量、使用方式和持续时间等信息。
4.4 治疗方案推荐
对病人也进行分类(决策树),每个叶子节点认为是一个类型的患者,然后看一下这些患者使用哪个典型治疗方案比较多,就作为这个叶子节点的推荐方案。
5. 实验
5.1 数据
数据来自中国14家三甲医院,分布在北京,石家庄,深圳,济南,长春,福州和西安。
实验专注于脑梗塞的药物推荐。
收集了2.7万的患者数据,医嘱数量100万。
5.2 提取典型治疗方案
其中使用了1090种药物,但大多数药物都是用于治疗其他疾病的。本文选取了138种最相关的药物,有36万医嘱包含这些药物,平均每个患者13个。
治疗过程分为四个阶段:前24小时、2-3天、4-7天、8-14天。
最终提取出四种典型的治疗方案

5.3 治疗方案推荐
对病人进行分类,分了17个类别。每个类别找一个治疗效果最好的(不一定是使用最多的)作为推荐结果。
5.4 推荐效果评估
由于每个类别都找到了统计上治疗效果最好的治疗方案,假设这些治疗方案推广到这个类别上的所有患者,再假设推广到其他患者身上之后仍然有这么好的治疗效果,计算一下推广之后,总体的治疗有效率和治愈率能提升多少。

【Treatment-Rec 论文阅读】Data-driven Automatic Treatment Regimen Development and Recommendation的更多相关文章
- 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- 【医学图像】3D Deep Leaky Noisy-or Network 论文阅读(转)
文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原 ...
- Event StoryLine Corpus 论文阅读
Event StoryLine Corpus 论文阅读 本文是对 Caselli T, Vossen P. The event storyline corpus: A new benchmark fo ...
- Nature/Science 论文阅读笔记
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...
- YOLO 论文阅读
YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YO ...
- [论文阅读]阿里DIN深度兴趣网络之总体解读
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...
- [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...
- [论文阅读笔记] node2vec Scalable Feature Learning for Networks
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...
随机推荐
- 【Git】01 下载安装(Windows)
Git 官网地址:[点我访问] https://git-scm.com/ 点击这个电脑自动识别操作系统与系统位数 开始安装 安装的目录不要有中文就行[最好也不要有空格] 算了,直接全选[小孩子才做选择 ...
- 【DataBase】MySQL 26 存储过程
一.概述 存储过程&函数,类似编程语言的方法 什么是方法? 完成特定功能的一组语句 方法的特点 1.可重用性 2.简化操作 二.存储过程[ Stored Procedures]: 一组预先编译 ...
- 【Project】原生JavaWeb工程 02 登陆业务的流程(第一阶段样例)
1.对用户信息的描述 首先用户有一些基本信息: 最简单的: 用户名称 + 用户密码 然后是用户状态,例如封号,注销,停用,等等 用户名称 + 用户密码 + 账号状态 接着为了防止脚本攻击,又产生了图形 ...
- nvidia官方AI框架软件的命令行操作接口 —— NVIDIA GPU Cloud (NGC) CLI
NVIDIA GPU Cloud (NGC) CLI 安装介绍地址: https://org.ngc.nvidia.com/setup/installers/cli 安装好后需要输入自己的NVIDIA ...
- 利用强化学习算法解释人类脑对高维状态的抽象表示:how humans can map high-dimensional sensory inputs in actions
论文: <Using deep reinforcement learning to reveal how the brain encodes abstract state-space repre ...
- 【转载】 vim中常用折叠命令
原文地址: https://www.cnblogs.com/litifeng/p/11675547.html 个人推荐的一个视频教程地址: 上古神器Vim:从恶言相向到爱不释手 - 终极Vim教程01 ...
- HDMI和DP双屏幕连接,对于BIOS来说哪个优先级高——DP连接优先级高于HDMI
最近被博导忽悠了,说是实验室的国家项目结项了,有几十万的资金没有花掉,于是每个人都有了1W的报销金额,由于是结项所用因此只能报销耗材.我这人呢,平时是绝对不占小便宜的,但这次是个大便宜,于是就有些没把 ...
- 【安装部署】Apache SeaTunnel 和 Web快速安装详解
版本说明 由于作者目前接触当前最新版本为2.3.4 但是官方提供的web版本未1.0.0,不兼容2.3.4,因此这里仍然使用2.3.3版本. 可以自定义兼容处理,官方提供了文档:https://mp. ...
- 【导师招募】Apache DolphinScheduler 社区又又又入选开源之夏啦!
很高兴和大家宣布,Apache DolphinScheduler 社区今年再次成功入选入选由中国科学院软件研究所开源软件供应链点亮计划发起的"开源之夏"活动. 入选公示链接:htt ...
- 5分钟教你使用idea调试SeaTunnel自定义插件
在用Apache SeaTunnel研发SM2加密组件过程中,发现社区关于本地调试SeaTunnel文章过于简单,很多情况没有说明,于是根据自己遇到问题总结这篇文档.SeaTunnel本地调试官方文档 ...