LRU(Least Recently Used)是一种常用的页面置换算法,其核心思想是选择最近最久未使用的页面予以淘汰。

LRU算法原理

  • 基本思想:LRU算法基于一个假设,即如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很低。因此,当缓存空间不足时,算法会选择最久未使用的数据进行淘汰。

  • 实现方式:LRU算法通常通过维护一个队列或链表来实现。当访问一个页面时,如果该页面已经在队列中,则将其移动到队列的头部(最近使用);如果该页面不在队列中,则将其添加到队列的头部,并检查队列长度是否超过预设的阈值。如果队列长度超过阈值,则淘汰队列尾部的页面(最久未使用)。

LRU算法的优缺点

  • 优点

    • LRU算法能够利用时间局部性原理,保留最近使用过的页面,提高缓存命中率。
    • 算法简单,易于实现。
  • 缺点
    • 需要维护一个队列或数组,占用额外的空间。
    • 当页面访问模式具有循环周期时,LRU算法可能会淘汰掉正在使用的页面,导致缓存命中率下降。
    • 对于随机访问的页面输入序列,LRU算法的表现可能不如其他算法。

结构设计

在Lru的结构中,我们要避免key或者val的拷贝。

因为key此时需要在双向列表中保存也需要在HashMap中保存,所以我们要以下方案:

  • Rc<K>引用计数

通过引用计数来控制生命周期

优点:不用处理不安全的代码

缺点:因为Val可能在遍历中被更改,所以不能存储在双向列表里,取得值的时候需要进行一次Hash

  • *mut K 裸指针

通过unsafe编码来实现

优点:在双向列表及HashMap中均存储一份数值,遍历或者根据key取值均只需一次操作

缺点:需要引入ptr,即用指针的方式来进行生命周期管理

节点设计

此时我们用的是裸指针的方式,让我们先来定义节点数据,数据将存储在该节点里面,key及val的生命周期随节点管理,在删除的时候需同时在列表及在HashMap中进行删除

/// Lru节点数据
struct LruEntry<K, V> {
/// 头部节点及尾部结点均未初始化值
pub key: mem::MaybeUninit<K>,
/// 头部节点及尾部结点均未初始化值
pub val: mem::MaybeUninit<V>,
pub prev: *mut LruEntry<K, V>,
pub next: *mut LruEntry<K, V>,
}

类设计

接下来需要设计LruCache结构,将由一个map存储数据结构,一个双向链表存储访问优先级,cap表示缓存的容量。

pub struct LruCache<K, V, S> {
/// 存储数据结构
map: HashMap<KeyRef<K>, NonNull<LruEntry<K, V>>, S>,
/// 缓存的总容量
cap: usize,
/// 双向列表的头
head: *mut LruEntry<K, V>,
/// 双向列表的尾
tail: *mut LruEntry<K, V>,
}

其中KeyRef仅仅只是表示裸指针的一层包装,方便重新实现Hash,Eq等trait

#[derive(Clone)]
struct KeyRef<K> {
pub k: *const K,
}

首先初始化对象,初始化map及空的双向链表:

impl<K, V, S> LruCache<K, V, S> {
/// 提供hash函数
pub fn with_hasher(cap: usize, hash_builder: S) -> LruCache<K, V, S> {
let cap = cap.max(1);
let map = HashMap::with_capacity_and_hasher(cap, hash_builder);
let head = Box::into_raw(Box::new(LruEntry::new_empty()));
let tail = Box::into_raw(Box::new(LruEntry::new_empty()));
unsafe {
(*head).next = tail;
(*tail).prev = head;
}
Self {
map,
cap,
head,
tail,
}
}
}

元素插入

插入对象,分已在缓存内和不在缓存内:

pub fn capture_insert(&mut self, k: K, mut v: V) -> Option<(K, V)> {
let key = KeyRef::new(&k);
match self.map.get_mut(&key) {
Some(entry) => {
let entry_ptr = entry.as_ptr();
unsafe {
mem::swap(&mut *(*entry_ptr).val.as_mut_ptr(), &mut v);
}
self.detach(entry_ptr);
self.attach(entry_ptr); Some((k, v))
}
None => {
let (_, entry) = self.replace_or_create_node(k, v);
let entry_ptr = entry.as_ptr();
self.attach(entry_ptr);
unsafe {
self.map
.insert(KeyRef::new((*entry_ptr).key.as_ptr()), entry);
}
None
}
}
}

存在该元素时,将进行替换

unsafe {
mem::swap(&mut *(*entry_ptr).val.as_mut_ptr(), &mut v);
}

并且重新维护访问队列,需要detach然后重新attach使其在队列的最前面,保证最近访问最晚淘汰,从而实现Lru。

如果元素不存在,那么将判断是否缓存队列为满,如果满了将要淘汰的数据进行替换,如果未满创建新的元素,即replace_or_create_node

元素删除

在将元素删除时,需要维护好我们的队列,防止出现队列错误及野指针等

pub fn remove<Q>(&mut self, k: &Q) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Hash + Eq + ?Sized,
{
match self.map.remove(KeyWrapper::from_ref(k)) {
Some(l) => unsafe {
self.detach(l.as_ptr());
let node = *Box::from_raw(l.as_ptr());
Some((node.key.assume_init(), node.val.assume_init()))
},
None => None,
}
}

这里因为移除时,仅仅需要一个可以转化成K的引用即可以,并不需要严格的K,利于编程。例如:

let mut map = LruCache::new(2);
map.insert("aaaa".to_string(), "bbb");
map.remove("aaaa");
assert!(map.len() == 0);

在此处我们就不需要严格的构建String对象。由于map中的key我们用的是KeyRef,在这里,我们构建一个KeyWrapper进行转化。

// 确保新类型与其内部类型的内存布局完全相同
#[repr(transparent)]
struct KeyWrapper<Q: ?Sized>(Q); impl<K, Q> Borrow<KeyWrapper<Q>> for KeyRef<K>
where
K: Borrow<Q>,
Q: ?Sized,
{
fn borrow(&self) -> &KeyWrapper<Q> {
let key = unsafe { &*self.k }.borrow();
KeyWrapper::from_ref(key)
}
}

如果移除成功,那么将从双向链表中同步移除,并且将指针中的值重新变成Rust中的对象,以便可以及时被drop,避免内存泄漏。

self.detach(l.as_ptr());
let node = *Box::from_raw(l.as_ptr());
Some((node.key.assume_init(), node.val.assume_init()))

其它操作

  • pop移除栈顶上的数据,最近使用的
  • pop_last移除栈尾上的数据,最久未被使用的
  • contains_key判断是否包含key值
  • raw_get直接获取key的值,不会触发双向链表的维护
  • get获取key的值,并维护双向链表
  • get_mut获取key的值,并可以根据需要改变val的值
  • retain 根据函数保留符合条件的元素

如何使用

在cargo.toml中添加

[dependencies]
algorithm = "0.1"
示例
use algorithm::LruCache;
fn main() {
let mut lru = LruCache::new(3);
lru.insert("now", "ok");
lru.insert("hello", "algorithm");
lru.insert("this", "lru");
lru.insert("auth", "tickbh");
assert!(lru.len() == 3);
assert_eq!(lru.get("hello"), Some(&"algorithm"));
assert_eq!(lru.get("this"), Some(&"lru"));
assert_eq!(lru.get("now"), None);
}

完整项目地址

https://github.com/tickbh/algorithm-rs

结语

Lru在缓存场景中也是极其重要的一环,但是普通的Lru容易将热点数据进行移除,如果短时间内大量的数据进入则会将需要缓存的数据全部清空,后续将介绍改进算法Lru-kLfu算法。

Lru在Rust中的实现, 源码解析的更多相关文章

  1. Scala 深入浅出实战经典 第65讲:Scala中隐式转换内幕揭秘、最佳实践及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  2. Scala 深入浅出实战经典 第61讲:Scala中隐式参数与隐式转换的联合使用实战详解及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...

  3. Scala 深入浅出实战经典 第60讲:Scala中隐式参数实战详解以及在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  4. Scala 深入浅出实战经典 第48讲:Scala类型约束代码实战及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  5. 解析jQuery中extend方法--源码解析以及递归的过程《二》

    源码解析 在解析代码之前,首先要了解extend函数要解决什么问题,以及传入不同的参数,会达到怎样的效果.extend函数内部处理传入的不同参数,返回处理后的对象. extend函数用来扩展对象,增加 ...

  6. .Net Core中的配置文件源码解析

    一.配置简述 之前在.Net Framework平台开发时,一般配置文件都是xml格式的Web.config,而需要配置其他格式的文件就需要自己去读取内容,加载配置了..而Net Core支持从命令行 ...

  7. flask 中 session的源码解析

    1.首先请求上下文和应用上下文中已经知道session是一个LocalProxy()对象 2.然后需要了解整个请求流程, 3.客户端的请求进来时,会调用app.wsgi_app(),于此此时,会生成一 ...

  8. Spring中AOP相关源码解析

    前言 在Spring中AOP是我们使用的非常频繁的一个特性.通过AOP我们可以补足一些面向对象编程中不足或难以实现的部分. AOP 前置理论 首先在学习源码之前我们需要了解关于AOP的相关概念如切点切 ...

  9. 机器学习:weka中Evaluation类源码解析及输出AUC及交叉验证介绍

    在机器学习分类结果的评估中,ROC曲线下的面积AOC是一个非常重要的指标.下面是调用weka类,输出AOC的源码: try { // 1.读入数据集 Instances data = new Inst ...

  10. Springboot Actuator之七:actuator 中原生endpoint源码解析1

    看actuator项目的包结构,如下: 本文中的介绍Endpoints. Endpoints(端点)介绍 Endpoints 是 Actuator 的核心部分,它用来监视应用程序及交互,spring- ...

随机推荐

  1. 测试环境不稳定&复杂的必然性及其对策

    简介: 为什么测试环境的不稳定是必然的,怎么让它尽量稳定一点?为什么测试环境比生产环境更复杂,怎么让它尽量简单一点?本文将就这两点进行分享.同时,还会谈一谈对测试环境和生产环境的区别的理解. 作者 | ...

  2. Helm Chart 多环境、多集群交付实践,透视资源拓扑和差异

    简介: 在本文中,我们将介绍如何通过 KubeVela解决多集群环境下 Helm Chart 的部署问题.如果你手里没有多集群也不要紧,我们将介绍一种仅依赖于 Docker 或者 Linux 系统的轻 ...

  3. [FAQ] VScode 用户代码片段设置

      以PHP为示例,配置如下: { "dpe": { "prefix": "dpe", "body": [ " ...

  4. 支持 dotnet 6 的 dnSpy 神器版本

    官方的 dnSpy 在 2021 时,由于某些吃瓜的原因 wtfsck 将 dnSpy 给 Archived 掉,在大佬被哄好之前,预计是不再更新.最新官方版本对 dotnet 6 的支持较弱,对于很 ...

  5. 5.prometheus监控--监控nginx

    1.监控程序环境准备 mkdir /data/docker-compose -p cd /data/docker-compose cat > docker-compose.yaml <&l ...

  6. OSI模型之网络层

    一.简介 网络层是OSI参考模型中的第三层,同时也是TCP/IP模型的第二层.它介于传输层和数据链路层之间,主要任务是把分组从源端传到目的端,为分组交换网上的不同主机提供通信服务.网络层传输单位是数据 ...

  7. C/C++如何写调试宏

    1. 调试宏以及测试 在写代码时,不可避免需要打印提示.警告.错误等信息,且要灵活控制打印信息的级别.另外,还有可能需要使用宏来控制代码段(主要是调试代码段)是否执行.为此,本文提供一种调试宏定义方案 ...

  8. 快速了解Django:核心概念解析与实践指南

    title: 快速了解Django:核心概念解析与实践指南 date: 2024/5/1 20:31:41 updated: 2024/5/1 20:31:41 categories: 后端开发 ta ...

  9. google账户配置foxmail和使用foxmail

    最近想把邮件分门别类,创建一些个人文件夹,更好的筛选邮件,可以尝试使用foxmail 1. 如果你有google账户,在配置foxmail之前需打开google账户的安全设置 https://myac ...

  10. 鸿蒙HarmonyOS实战-ArkUI事件(单一手势)

    一.单一手势 应用程序的手势操作是指在移动设备上使用手指或手势进行与应用程序交互的方式.手势操作可以包括点击.滑动.双击.捏合等动作,用于实现不同的功能和操作. HarmonyOS中常见的手势操作及其 ...