[ABC318G] Typical Path Problem
Problem Statement
You are given a simple connected undirected graph $G$ with $N$ vertices and $M$ edges.
The vertices and edges of $G$ are numbered as vertex $1$, vertex $2$, $\ldots$, vertex $N$, and edge $1$, edge $2$, $\ldots$, edge $M$, respectively, and edge $i$ $(1\leq i\leq M)$ connects vertices $U_i$ and $V_i$.
You are also given distinct vertices $A,B,C$ on $G$.
Determine if there is a simple path connecting vertices $A$ and $C$ via vertex $B$.
What is a simple connected undirected graph?
A graph $G$ is said to be a simple connected undirected graph when $G$ is an undirected graph that is simple and connected.
A graph $G$ is said to be an undirected graph when the edges of $G$ have no direction.
A graph $G$ is simple when $G$ does not contain self-loops or multi-edges.
A graph $G$ is connected when one can travel between all vertices of $G$ via edges.
Constraints
- $3 \leq N \leq 2\times 10^5$
- $N-1\leq M\leq\min\left(\frac{N(N-1)}{2},2\times 10^5\right)$
- $1\leq A,B,C\leq N$
- $A$, $B$, and $C$ are all distinct.
- $1\leq U_i<V_i\leq N$
- The pairs $(U_i,V_i)$ are all distinct.
- All input values are integers.
点不能重复,考虑圆方树。
如果 \(A,B,C\) 在一个点双内,那么一定没问题。因为删掉B 这个点一定还有路径可以到 \(C\)
那么在圆方树上的体现就是 A,B,C 连着同一个方点。
以此类推,如果 \(A,C\) 在圆方树上的路径通过了一个 B 所连的方点,那么就可以,否则割点不能重复走,所以不行。
#include<bits/stdc++.h>
using namespace std;
const int N=4e5+5;
int n,m,a,b,c,vs[N],st[N],tp,idx,dfn[N],low[N];
struct graph{
int hd[N],e_num;
struct edge{
int v,nxt;
}e[N<<1];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
e[++e_num]=(edge){u,hd[v]};
hd[v]=e_num;
}
}g,h;
int read()
{
int s=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
s=s*10+ch-48,ch=getchar();
return s;
}
void tarjan(int x)
{
dfn[x]=low[x]=++idx;
st[++tp]=x;
for(int i=g.hd[x];i;i=g.e[i].nxt)
{
int v=g.e[i].v;
if(!dfn[v])
{
tarjan(v);
low[x]=min(low[x],low[v]);
if(low[v]==dfn[x])
{
++n;
while(st[tp]^v)
h.add_edge(n,st[tp--]);
h.add_edge(n,st[tp--]);
h.add_edge(x,n);
}
}
else
low[x]=min(low[x],dfn[v]);
}
}
void dfs(int x,int y)
{
st[++tp]=x;
if(x==c)
{
for(int i=1;i<=tp;i++)
vs[st[i]]=1;
return;
}
for(int i=h.hd[x];i;i=h.e[i].nxt)
if(h.e[i].v^y)
dfs(h.e[i].v,x);
--tp;
}
int main()
{
n=read(),m=read(),a=read(),b=read(),c=read();
for(int i=1,u,v;i<=m;i++)
g.add_edge(read(),read());
tarjan(a);
dfs(a,0);
for(int i=h.hd[b];i;i=h.e[i].nxt)
if(vs[h.e[i].v])
return puts("Yes"),0;
puts("No");
}
[ABC318G] Typical Path Problem的更多相关文章
- Eclipse 项目红色叹号:Build Path Problem
Description Resource Path Location TypeA cycle was detected in the build path of project 'shgl-categ ...
- Solve Longest Path Problem in linear time
We know that the longest path problem for general case belongs to the NP-hard category, so there is ...
- Why longest path problem doesn't have optimal substructure?
We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...
- Codefroces Educational Round 27 845G Shortest Path Problem?
Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...
- 干货 | 列生成VRPTW子问题ESPPRC( Elementary shortest path problem with resource constraints)介绍附C++代码
00 前言 各位小伙伴大家好,相信大家已经看过前面column generation求解vehicle routing problems的过程详解.该问题中,子问题主要是找到一条reduced cos ...
- 安装数据库Typical path for xclock: /usr/X11R6/bin/xclock 错误问题
[oracle@localhost database]$ ./runInstaller Starting Oracle Universal Installer... Checking Temp spa ...
- [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others) Mem ...
- 【CF edu 27 G. Shortest Path Problem?】
time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...
- Codeforces 845G Shortest Path Problem?
http://codeforces.com/problemset/problem/845/G 从顶点1dfs全图,遇到环则增加一种备选方案,环上的环不需要走到前一个环上作为条件,因为走完第二个环可以从 ...
- Project 'king.commons' is missing required library: 'lib/plweb.jar' Build path Build Path Problem
问题描述:之前在项目里引用一个jar 包,后来不用了删掉 ,但是没有删干净,然后报以下错误. 解决方案: 1.删除libraries 2.找到该项目下的 .classpath 文件,用记事本打开 ,删 ...
随机推荐
- 《最新出炉》系列初窥篇-Python+Playwright自动化测试-12-playwright操作iframe-中篇
1.简介 按照计划今天就要用实际的例子进行iframe自动化测试.经过宏哥长时间的查找,终于找到了一个含有iframe的网页(QQ邮箱和163邮箱),别的邮箱宏哥就没有细看了.所以今天这一篇的主要内容 ...
- 文心一言 VS 讯飞星火 VS chatgpt (87)-- 算法导论8.2 4题
四.用go语言,设计一个算法,它能够对于任何给定的介于0到 k 之间的 n 个整数先进行预处理,然后在 O(1)时间内回答输入的 n个整数中有多少个落在区间[a..b]内.你设计的算法的预处理时间应为 ...
- Vue vs React:你需要知道的一切
Vue 和 React 是创建 JavaScript 网络应用程序最常用的两种工具.但我们该如何在两者之间做出选择呢?在本篇 Vue 与 React 的对比中,我们将尝试找出答案.我们将回顾每种工具的 ...
- Record -「Tricks」记录
曼哈顿距离 \(\text{dist}(A,B)=|x_{A}-x_{B}|+|y_{A}-y_{B}|\) 可以拆成 \(\max\{x_{A}-x_{B}+y_{A}-y_{B},x_{A}-x_ ...
- mysql8安装踩坑记
背景:已安装mysql5.7版本 问题一:默认的3306端口被占用 进入mysql5.7的my.ini文件,更改port为3307或者其他未被占用的端口 问题二:Install/Remove of t ...
- Redis系列内容完整版
@ 目录 Redis系列之_Redis介绍安装配置 第一章 redis初识 1.1 Redis是什么 1.2 Redis特性(8个) 1.3 Redis单机安装 1.3.1下载安装 1.3.2三种启动 ...
- How to install Django¶
This document will get you up and running with Django. Install Python Being a Python Web framework, ...
- android 中ids.xml资源的使用
ids.xml 前面我们见识过ids.xml文件,但是这个文件是什么意思呢?我们来看下文档中的介绍: 先看下它给的例子: XML file saved at res/values/ids.xml: 使 ...
- DeepSpeed框架:1-大纲和资料梳理
DeepSpeed是一个深度学习优化软件套件,使分布式训练和推理变得简单.高效和有效.它可以做些什么呢?训练/推理具有数十亿或数万亿参数的密集或稀疏模型:实现出色的系统吞吐量并有效扩展到数千个GP ...
- 中山市 香山杯2023 Misc pintu
大便题目啊,跟拼图没有半毛钱关系 附件给我们4703张图片,而且给了tip:8->10,且这些图片的宽度都是一样的. 首先我们考虑将黑色图片当作0,白色图片当作1,将这些按编号顺序将这些图片转成 ...