[转载]R2: 相关系数、复相关系数及半偏相关系数之间的联系
开贴举例说明相关系数、复相关系数及半偏相关系数之间的联系。
比如,我们要预测学生在高中的表现(学生成绩),一种方法是测量学习速度和难易程度的能力测验来衡量学生的学习能力。那么,假设一个学生已经做了这样的测验,在这个样本中学习能力(X1)与学习成绩(Y)的相关系数是r1=.4,这就表明能力可以解释学习成绩方差的.42=.16,即16%。不过,还有84%的方差尚未得到解释(参考:已解释和未解释的方差)。
与大多数的学生表现一致,能力并不是唯一重要的因素。努力程度或学习动机等也可能很有效预测实际表现。假设我们可以准确的调查学生在同一学期的学习时间(单位:h)。在这个例子中,学习时间(X2)和学习成绩的相关系数是r2=.3。尽管这不如学习能力的相关程度高,但学习时间仍然可以解释.32=.09(9%)的学习成绩方差。但是这9%的方差和被学习能力解释的16%的方差是否不同呢?我们是不是能够简单地把两个百分数加起来,然后说能力和学习时间总共解释了9%+16%=25%的学习成绩方差呢?如果学习能力和时间的相关为0,那么我们就可以这样下结论。
如图 1fig1.cdr所示,如果学习成绩的总方差以一个长方形表示,那么学习能力和学习时间可用长方形内两个独立的圆圈表示。圆圈的面积就对应于每个预测变量能解释的方差百分比。在这样的图中,图形重叠表示变量相关,而不重叠表示变量不相关。我们称这样的图为韦恩图(Venn Diagram)。在图 1的韦恩图中,两个圆圈没有重叠,说明他们代表的预测变量是相互独立的(两者的相关系数为0)。两个圆圈加起来就表示两个预测变量加在一起可以解释因变量(效标变量)的方差比例。如果我们用R2表示被解释的总方差,我们就可以看出,在这个例子中,R2=r12+r22=.42+.32=.25。与r2称为决定系数一致,R2称为复决定系数(Coefficient of multiple determination)。
图 1
如果不平方,则R称为复相关系数(Multiple Correlation Coefficient),它是(基于两个及其以上预测变量)对因变量(效标变量、被解释变量)做的预测值和因变量的实际值之间的相关。在本例中,R=.5,比简单把两个相关系数加起来要小,但比他们其中任何一个都大(只要当两个为正且相互独立的r合并,都会有这种情况)。
不过,你很快就会发现,在真实世界里,就连只有两个预测变量的情况,预测变量之间的相关系数r也往往并不等于0,换句话说,预测变量之间也不是完全独立的,而是相互作用的。还是回到上文的例子中,假设高学习能力的学生稍微倾向于花更多的学习时间,因此学习能力与学习时间的相关系数是r12=.2。此时,两个预测变量之间的相关在韦恩图中就被表示为两个圆圈之间的重叠部分,如图 2fig2.cdr所示。一个预测变量所解释方差的一部分仍可以被另一个预测变量来解释(请注意,为了强调其中有趣的关系,图 2中的各个面积并没有按相应的比例成图)。
图 2
在图 2中,复决定系数R2是两个圆圈所覆盖的面积。由于两个圆圈有重叠,因此R2比我们上次那样简单地把两个圆圈加起来的要小。如果仍然简单相加,重叠部分就被重复计算了。所以,R2实际上是A、B和C面积之和,因此R2=.21。
那么,问题又来了。学习能力(X1)可以解释学习成绩的方差比例为16%,其中有4%又可以被学习时间(X2)所解释,那么剩余的12%就是学习能力“唯一”可以解释的方差比重,我们对A面积开平方得到(sqrt(.12)=).3464,这就是学习能力(X1)与学习成绩(Y)的半偏相关系数。这个半偏相关系数告诉我们学习时间(X2)保持不变时,学习能力(X1)与学习成绩(Y)之间关系的强度。同样地,B面积开平方得到学习时间与学习成绩的半偏相关系数(sqrt(.05)=)0.2236,或者R2减去学习能力相关系数的平方r12再开方。
互补现象
还是上文这个例子,假设聪明学生都不怎么爱学习,r12就为负数。这群学生中,聪明学生比较懒,而不聪明学生却很努力弥补能力上的不足,r12=-.2(在韦恩图中没办法表示这种负相关)。但是,这种负的重叠会增加R2,使得R2比r12+r22要大,用下式直接计算R2:
式中:在符号ry(1.2)中,圆点之后的数字表示被排除在外的变量,括号表示这种排除只局限于在括号内的变量。Y不在括号里告诉我们这是半偏相关系数而不是偏相关系数。代入上式,得到此时R2=.307,X1、X2的半偏相关(半偏相关系数)为.4695和.3878,高于各自的效度(相关系数).4和.3。这就是互补现象。
抑制现象
参考文献
[1] Cohen BH. Explaining psychological statistics[M]. New York, US:John Wiley & Sons, 2008. 中译本: 高定国等译, 心理统计学(第三版)[M]. 上海:华东师范大学出版社, 2011.
转自:http://blog.sciencenet.cn/blog-1148346-852597.html
[转载]R2: 相关系数、复相关系数及半偏相关系数之间的联系的更多相关文章
- 【转载】python3.0与2.x之间的区别
python3.0与2.x之间的区别: 1.性能 Py3.0运行pystone benchmark的速度比Py2.5慢30%.Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可以取得很好 ...
- 【转载】String、StringBuffer与StringBuilder之间区别
文章来源:http://www.cnblogs.com/A_ming/archive/2010/04/13/1711395.html 这两天在看Java编程的书,看到String的时候将之前没有弄懂的 ...
- [转载]利用memcached在多台服务器之间共享PHP的session数据
原文地址:利用memcached在多台服务器之间共享PHP的session数据作者:a1049709658 最近我的几篇文章都是是最近项目的一点心得^^ 这个项目一开始就设计的"很大&quo ...
- 转载 转载 转载 数组a[],a,&a之间的区别
通俗理解:内存就是公寓房间,指针就是房间的门牌号,数组就是连续的公寓房间,数组名就是这组连续房间的起始地址,也就是第一个房间的地址. 例如int a[5] a是数组名,也就是第一个房间号 & ...
- 【转载】CString、BSTR和LPCTSTR之间的区别
原文:http://www.cnblogs.com/GT_Andy/archive/2011/01/18/1938605.html 一.定义 1.CString:动态的TCHAR数组.它是一个完全独立 ...
- 转载:Linux系统和Linux系统之间如何实现文件传输
两台Linux系统之间传输文件 听语音 | 浏览:13183 | 更新:2014-07-15 15:22 | 标签:linux 1 2 3 4 5 6 分步阅读 如何在Linux系统之间传输文件及文件 ...
- 半联结&反联结!
半联结是在两个数据集(表)之间的联结,其中第一个数据集中的数据行在决定是否返回时会根据在另一个数据集中出现或不出现至少一个相匹配的数据行来确定.“不出先”匹配行——这是半联结的一种特殊形式,称为反联结 ...
- Pearson product-moment correlation coefficient in java(java的简单相关系数算法)
一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变 ...
- python相关系数
皮尔逊相关系数: 用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间. 几组的点集,以及各个点集中和之间的相关系数.我们可以发现相关系数反映的是变量之间的线性关系和相关性的方向(第一排 ...
- python学习笔记(3) -- 字符与数字之间的转换函数
转载:python中的字符数字之间的转换函数 int(x [,base ]) 将x转换为一个整数 long(x [,base ]) 将x转换为一个长整数 ...
随机推荐
- 用 Vue.js 实现一个 JSON Viewer
演示地址: http://json.imlht.com/vue-json-viewer-demo.html 常用的 JSON 格式化工具 JSON 是一种轻量级的数据交换格式, 相信大家用得比较多, ...
- 2021-3-9 保存csv格式文件
public void SaveCSV(DataTable dt, string fullPath) { FileInfo fi = new FileInfo(fullPath); if (!fi.D ...
- 代码随想录算法训练营第二天| LeetCode 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵II
977.有序数组的平方 题目链接:https://leetcode.cn/problems/squares-of-a-sorted-array/ 文章讲解:https://programmercarl ...
- pycharm:插件translation 更新TTK失败
解决方案 1.修改C:\Windows\System32\drivers\etc 下hosts文件, 添加 203.208.40.66 translate.google.com 203.208.40. ...
- Django常用配置
创建Django项目(命令行) 创建项目:打开终端,使用命令:django-admin startproject [项目名称]即可创建.比如:django-admin startproject fir ...
- 预处理器 Less 的十个语法
Less 是一门 CSS 预处理语言,它扩充了 CSS 语言,增加了诸如变量.混合(mixin).函数等功能,让 CSS 更易维护.方便制作主题.扩充. 不过浏览器只能识别 CSS 语言,所以 Les ...
- 你可得知道物理地址与IP地址
来看看计算机网络中这些常见的概念你有没有理解~ 物理地址 表示方式 物理地址即mac地址,每个网卡都有6字节的唯一标识,前三个字节表示厂商,后三个字节由厂商随机分配. 如何查看 在 command 中 ...
- debian11安装mysql5.7
前言 mysql官网5.7版本的只找到debian10的,没有debian11的,试了下也能用. 系统版本:debian 11 mysql版本:5.7.35 步骤 下载bundle的tar包.官网地址 ...
- 使用 Vue 实现页面访问拦截
目录 1 Vue 路由与导航守卫 1.1 Vue 路由简介 1.2 导航守卫概述 2 实现访问拦截的核心概念 2.1 路由守卫介绍 2.1.1 前置守卫(beforeEach) 2.1.2 后置钩子( ...
- [PWN之路]栈溢出那些事儿
前言 如果入门,想要学习栈溢出相关知识欢迎参考hash_hash的入门文章和我的集训wp,按照buuctf的题目一点一点做,不会的搜索到网上,并且及时在论坛发帖总结和交流.并且这里贴上一个不错的教程, ...