文心一言 VS 讯飞星火 VS chatgpt (134)-- 算法导论11.2 6题
六、用go语言,假设将n 个关键字存储到一个大小为 m 且通过链接法解决冲突的散列表中,同时已知每条链的长度,包括其中最长链的长度 L,请描述从散列表的所有关键字中均匀随机地选择某一元素并在 O(L·(1+1/a))的期望时间内返回该关键字的过程。
文心一言,代码不能运行:
在这个问题中,我们需要使用 Go 语言在一个大小为 m 且通过链接法解决冲突的散列表中,从 n 个关键字中均匀随机地选择一个元素。为了达到 O(L·(1+1/a)) 的期望时间复杂度,我们需要考虑以下几个步骤:
首先,我们需要计算散列表的负载因子。负载因子是散列表中的元素数量 n 与散列表大小 m 的比值,即 n/m。
然后,我们需要使用线性探测来解决冲突。线性探测是一种解决散列表冲突的方法,它通过在发生冲突时顺序查找下一个位置来解决冲突。
接下来,我们需要生成一个随机数,该随机数的范围是 0 到 n-1。我们可以使用 Go 语言的 math/rand 包来生成随机数。
最后,我们可以通过在链表中找到这个随机索引位置的元素来选择一个随机元素。由于链表的长度已知,我们可以直接计算出随机索引位置。
以下是一个可能的实现:
package main
import (
"fmt"
"math/rand"
"time"
)
type ListNode struct {
Val int
Next *ListNode
}
type HashTable struct {
Size int
Buckets []*ListNode
}
func NewHashTable(size int) *HashTable {
return &HashTable{Size: size, Buckets: make([]*ListNode, size)}
}
func (h *HashTable) Hash(key int) int {
return key % h.Size
}
func (h *HashTable) Insert(key int) {
index := h.Hash(key)
node := NewListNode(key)
h.Buckets[index] = node
}
func (h *HashTable) SelectRandom() (int, *ListNode) {
rand.Seed(time.Now().UnixNano())
index := rand.Intn(h.Size)
node := h.Buckets[index]
return node.Val, node
}
func main() {
hashTable := NewHashTable(10)
for i := 0; i < 100; i++ {
hashTable.Insert(i)
}
for i := 0; i < 10; i++ {
value, _ := hashTable.SelectRandom()
fmt.Println(value)
}
}
这个代码实现了一个简单的散列表,并使用线性探测来解决冲突。然后,它使用 SelectRandom 函数从散列表中选择一个随机元素。这个函数首先生成一个随机索引,然后从该索引处选择一个元素。由于每个元素被等概率地选择,所以这个过程满足题目要求的 O(L·(1+1/a)) 的期望时间复杂度。



讯飞星火,代码不能运行:
为了在 O(L·(1+1/a)) 的期望时间内从散列表的所有关键字中均匀随机地选择某一元素,我们可以使用以下步骤:
1.首先,我们需要计算每个链的长度的概率分布。这可以通过将每个链的长度除以所有链的总长度来实现。例如,如果最长链的长度为 L,其他链的长度分别为 l1、l2、...、ln,那么概率分布为 P(L) = 1/n, P(l1) = 1/n, ..., P(ln) = 1/n。
2.然后,我们可以生成一个随机数 r,范围在 [0, 1] 之间。
3.接下来,我们遍历概率分布,累加每个链的概率值。当累加的概率值大于等于 r 时,我们就找到了对应的关键字。
以下是用 Go 语言实现这个过程的代码:
package main
import (
"fmt"
"math/rand"
"time"
)
func main() {
n := 10 // 关键字数量
m := 5 // 散列表大小
L := 3 // 最长链长度
a := 2 // 链接法解决冲突的参数
// 初始化散列表
hashTable := make([][]int, m)
for i := range hashTable {
hashTable[i] = make([]int, L)
}
// 假设已经将 n 个关键字存储到散列表中
for i := 0; i < n; i++ {
hashValue := i % m
chainIndex := i % L
hashTable[hashValue][chainIndex] = i
}
// 计算概率分布
probabilities := make([]float64, L)
totalLength := float64(L) * float64(n)
for i := 0; i < L; i++ {
probabilities[i] = totalLength / float64(n)
}
// 生成随机数
rand.Seed(time.Now().UnixNano())
r := rand.Float64()
// 根据概率分布找到对应的关键字
cumulativeProbability := 0.0
for i := 0; i < L; i++ {
cumulativeProbability += probabilities[i]
if r <= cumulativeProbability {
selectedKeyword := hashTable[i%m][i%L]
fmt.Printf("选中的关键字: %d
", selectedKeyword)
break
}
}
}
这段代码首先初始化了一个大小为 m 且通过链接法解决冲突的散列表,然后将 n 个关键字存储到散列表中。接下来,它计算了每个链的长度的概率分布,并生成了一个随机数。最后,它根据概率分布找到了对应的关键字。



360智脑:
首先,我们需要定义一个散列表结构体,其中包含关键字、链表和链表长度等信息。然后,我们可以使用Go语言中的rand.nextInt()函数来生成0到m-1之间的随机数作为链表的下标,从而获取散列表中的一个元素。
接下来,我们需要考虑如何在O(L·(1+1/a))的期望时间内返回该关键字。由于链表中每个节点都有相同长度的链,因此我们可以通过比较链表的长度来找到对应的链表。具体来说,我们可以先遍历整个散列表,找到链表中最长链的长度L。接着,我们遍历整个散列表,对于每个链表,计算其长度为n-1,并记录最长链长度L。最后,我们再次遍历整个散列表,找到链表中长度等于L的链,并返回该链表中的元素。
在以上过程中,我们需要注意以下几点:
1.需要保证遍历散列表的顺序是均匀的,否则可能会导致时间复杂度偏高。
2.在计算最长链长度时,需要记录每个链表的长度,并在后续遍历中进行比较,否则可能会出现时间复杂度偏高的问题。
3.在遍历散列表时,需要注意链表的头部和尾部,以免出现时间复杂度偏高的问题。

智谱清言,抛panic:
在 Go 语言中,我们可以使用以下方法实现这个需求:
1.首先,我们需要创建一个大小为 m 的散列表,并通过链接法解决冲突。我们可以使用数组来存储关键字和对应的链表。
2.接下来,我们需要实现一个均匀随机选择关键字的方法。我们可以使用线性同余生成器(LCG)算法来生成一个 [0, m-1] 之间的随机数。LCG 算法如下:
x := (a * x + c) % m
其中,a、c 和 m 是常数,可以通过调整它们来改变随机数的分布。在这里,我们可以将 a 设置为 1,c 设置为 1,以实现均匀分布。
3.当生成一个随机数后,我们需要在对应的链表中查找关键字。我们可以使用二分查找法或在链表头和尾进行遍历查找。二分查找法的平均时间复杂度为 O(L),从链表头和尾遍历的平均时间复杂度也为 O(L)。
4.为了在 O(L·(1+1/a)) 的期望时间内返回关键字,我们可以将随机生成器和查找方法结合起来。具体地说,我们可以连续生成 n 个随机数,每个随机数对应一个关键字。然后,我们可以使用二分查找法或在链表头和尾进行遍历查找,直到找到所有 n 个关键字。
5.在找到所有关键字后,我们可以使用优先队列(如小根堆)来维护已找到的关键字及其在链表中的位置。这样,我们可以按照优先级顺序依次返回关键字,从而实现均匀随机选择。
6.以下是一个简单的 Go 实现:
package main
import (
"fmt"
"math/rand"
"sort"
)
type Node struct {
Key int
Next *Node
}
type HashTable struct {
Size int
Nodes []*Node
LCG [2]int
Found bool
}
func NewHashTable(m, n int) *HashTable {
ht := &HashTable{
Size: m,
Nodes: make([]*Node, m),
LCG: [2]int{1, 1},
}
rand.Seed(time.Now().UnixNano())
for i := 0; i < n; i++ {
k := rand.Intn(m)
ht.Nodes[k] = &Node{Key: k}
}
return ht
}
func (ht *HashTable) FindRandomKey() (int, bool) {
x := ht.generateLCG()
for _, node := range ht.Nodes {
for node.Next != nil {
if node.Key == x {
return x, true
}
node = node.Next
}
}
return 0, false
}
func (ht *HashTable) generateLCG() int {
a, b := ht.LCG[0], ht.LCG[1]
ht.LCG[0] = (a*ht.LCG[0] + b) % ht.Size
ht.LCG[1] = (a*ht.LCG[1] + b) % ht.Size
return ht.LCG[0]
}
func main() {
ht := NewHashTable(10, 5)
foundCount := 0
for i := 0; i < 10; i++ {
k, found := ht.FindRandomKey()
if found {
fmt.Printf("Found key: %d\n", k)
foundCount++
}
}
fmt.Printf("Found %d/10 keys.\n", foundCount)
}
这个实现创建了一个大小为 10 的散列表,并均匀随机选择了 5 个关键字。运行结果会显示出找到的关键字及其位置。



通义千问:
在给定的问题中,我们可以使用概率分析的方法来实现这个过程。
首先,我们需要维护一个指针数组,其中每个元素都是指向链表中的一个节点。然后,我们对所有节点进行一次遍历,并将其放入指针数组中。这样,我们就有了一个包含所有链表节点的数组。
接下来,我们将所有的链表视为一个整体,并根据其总长度计算出每个节点被选中的概率。假设总的链表长度为 T,那么每个节点被选中的概率就是 1/T。
然后,我们生成一个介于 0 到 T-1 的随机数 R,并找到指针数组中的第 R 个元素。如果这个元素所在的链表为空,那么就跳过它并继续查找下一个链表。重复这个过程,直到找到一个非空的链表为止。
最后,我们在当前链表中按照概率的方式随机选择一个元素。具体来说,我们可以生成一个介于 0 到 L-1 的随机数 K,并从当前链表的第一个节点开始,每次移动 K 步,直到找到一个有效的节点为止。
以上就是整个过程的大致思路,具体的实现可能需要根据实际的需求和条件进行适当的调整。总的来说,这种方法可以在 O(L·(1+1/a)) 的期望时间内返回一个关键字,其中 a 是用于生成随机数的概率分布参数。

天工:
在一个大小为m且通过链接法解决冲突的散列表中,每个关键字被存储在一个链中,链的长度可以是任意的,但是已知最长链的长度为L。现在要从散列表中均匀随机地选择一个元素并在O(L·(1+1/a))的期望时间内返回该元素,可以采用以下算法:
1.首先计算每个链的平均长度,即平均每个关键字在链中被访问的次数,记为a。
2.从任意一个链中选择一个元素作为起点,将该元素从链中删除,并将其插入到一个新的链中。
3.重复步骤2,直到新链中的元素数量达到m。
4.从新链中随机选择一个元素返回。
5.计算每个关键字被访问的次数,即新链中的元素数量,将其除以m即为每个关键字的访问概率。
6.根据每个关键字的访问概率,选择要返回的关键字。
该算法的时间复杂度为O(L·(1+1/a)),其中L为最长链的长度,a为平均每个关键字在链中被访问的次数。具体来说,步骤2和步骤6的时间复杂度为O(L),步骤3和步骤5的时间复杂度为O(1),因此总时间复杂度为O(L·(1+1/a))。
需要注意的是,该算法并不保证每个关键字被选中的概率相等,因为每个关键字被访问的次数可能不同。但是,该算法可以保证在O(L·(1+1/a))的期望时间内返回任意一个关键字,并且具有一定的随机性。如果需要保证每个关键字被选中的概率相等,可以使用其他更复杂的算法,例如Reservoir Sampling算法。

灵小智:
假设散列表的大小为m,链的长度分别为L0、L1、...、Ln-1,其中链的最大长度为L,a为散列表加载因子,则链的平均长度为L_avg = (L0 + L1 + ... + Ln-1) / n。
从所有关键字中均匀随机地选择某一元素,即选择一个位置i(0 <= i < m),再在链i中随机选择一个元素。设链i的长度为Li,则在链i中随机选择一个元素的时间复杂度为O(Li)。
由于散列表是用链接法解决冲突的,因此每个位置i上的元素数量服从均值为a的泊松分布。则链i的期望长度为E[Li] = a,故所有链的平均长度为L_avg = a。因此,从所有关键字中均匀随机地选择一个元素的期望时间复杂度为:
E[T] = Σi=0~m-1 (P(i) * O(Li))
= Σi=0~m-1 (1/m * O(Li))
= (1/m) * Σi=0~m-1 (O(Li))
= (1/m) * n * L_avg
= L_avg / a
因此,从散列表的所有关键字中均匀随机地选择某一元素并在O(L·(1+1/a))的期望时间内返回该关键字。

chatgpt:
要实现从散列表中均匀随机选择某一元素并在 O(L·(1+1/a)) 期望时间内返回该关键字,可以按照以下步骤进行:
1.随机选择一个链表的索引。
2.根据所选链表的索引,获取链表的长度 L。
3.在该链表上生成一个随机数 r,范围为 [0, L-1]。
4.遍历选定的链表直到找到第 r 个元素,并将其返回。
根据链接法解决冲突,我们可以通过散列表中每条链的长度来计算平均查找长度 a。然后,在步骤3中,使用生成的随机数 r 和 a 来调整搜索起点,以保证均匀随机地选择某一元素。
总体而言,此过程在 O(L·(1+1/a)) 的期望时间内返回关键字。

文心一言 VS 讯飞星火 VS chatgpt (134)-- 算法导论11.2 6题的更多相关文章
- 【对比】文心一言对飚ChatGPT实操对比体验
前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...
- 【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...
- 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入
"文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...
- 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果
百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 基于讯飞语音API应用开发之——离线词典构建
最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...
- android用讯飞实现TTS语音合成 实现中文版
Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...
- android讯飞语音开发常遇到的问题
场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...
- 初探机器学习之使用讯飞TTS服务实现在线语音合成
最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...
随机推荐
- mysql中使用sql语句统计日志计算每天的访问量
日志建表语句: CREATE TABLE `syslog` ( `syslogid` int(11) NOT NULL AUTO_INCREMENT, `username` varchar(255) ...
- 可托拉拽的WPF选项卡控件,强大好用!
推荐一个简单易用的WPF选项卡控件. 项目简介 这是一个基于WPF开发的,可扩展.高度可定制.轻量级的UI组件,支持拖拉拽功能,可以让开发人员快速实现需要选项卡窗口的系统. 特色功能 1.拖拉拽标签: ...
- golang技术降本增效的手段
最近一年各大中小厂都在搞"优化",说到优化,目的还是"降本增效",降低成本,增加效益(效率). 技术层面,也有一些降本增效的常规操作. 比如池化.io缓冲区技术 ...
- opencv-python中 boundingRect(cnt)以及cv2.rectangle用法
矩形边框(Bounding Rectangle)是说,用一个最小的矩形,把找到的形状包起来.还有一个带旋转的矩形,面积会更小,效果见下图 首先介绍下cv2.boundingRect(img)这个函数 ...
- python移动文件
#移动文件(目录) shutil.move("oldpos","newpos") shutil.move("D:/知乎日报/latest/一张优惠券, ...
- asset module type 替代 loader 处理图片字体等文件资源
前面文章中 体验了webpack的打包 .解析css资源 ,接下来看看项目中常用到的图片.字体.文件该怎么处理吧~ 项目路径如下,在上一篇 解析css资源 项目基础上增加了一些文件 demo ├─ s ...
- 部署基于etcd的coredns集群
前言 现需要为公司搭建私有DNS,私有服务器都使用私有DNS的地址,便于访问内部自定义的域名.采用CoreDNS + ETCD方案部署,coredns和etcd都以三实例运行,etcd为集群模式,使用 ...
- SpringBoot3集成Kafka
目录 一.简介 二.环境搭建 1.Kafka部署 2.Kafka测试 3.可视化工具 三.工程搭建 1.工程结构 2.依赖管理 3.配置文件 四.基础用法 1.消息生产 2.消息消费 五.参考源码 标 ...
- 无界AI绘画基础教程,和Midjourney以及Stable Diffusion哪个更好用?
本教程收集于:AIGC从入门到精通教程汇总 简单的总结 Midjourney,Stable Diffusion,无界AI的区别? Midjourney,收费,上手容易,做出来高精度的图需要自己掌握好咒 ...
- 《SQL与数据库基础》14. 存储过程 · 存储函数
目录 存储过程 基本语法 变量 系统变量 用户定义变量 局部变量 if判断 参数 case判断 while循环 repeat循环 loop循环 游标 条件处理程序 存储函数 本文以 MySQL 为例 ...