题目传送门

题意

在一个无向图上选择尽量少的点涂黑,使得删除任意一个点后,每个连通分量里都至少有一个黑点(多组数据)。

正文

观察题意,发现这是个 Tarjan 求点双连通分量的板子。

考虑在求点双连通分量的时候把割点顺便求出来,令第 \(i\) 个点双连通分量的大小为 \(size_i\),然后进行分类讨论:

  • 当第 \(i\) 个点双连通分量中没有割点时,符合题意则需要涂黑两个点,方案总数增加 \(C_{size_i}^2=\frac{size_i!}{{(size_i-2)}!×2!}=\frac{size_i(size_i-1)}{2}\)。

    • 如图,\((1,2,3,4)\) 为本图的点双连通分量,且没有割点,则在 \((1,2,3,4)\) 中任选两个点涂黑。

  • 当第 \(i\) 个点双连通分量中有 \(1\) 个割点时,若符合题意则需要涂黑一个点(不能将割点涂黑),方案总数增加 \(C_{size_i-1}^1=\frac{(size_i-1)!}{{(size_i-2)}!×1!}=size_i-1\)。

    • 如图,\((1,2,6,3,5),(1,4)\) 为本图的两个点双连通分量,且 \(1\) 为本图的割点,则在 \((2,6,3,5),(4)\) 中各任选出一个点涂黑。

  • 当第 \(i\) 个点双连通分量中的割点个数大于 \(1\) 时,不需要涂黑。

    • 如图,点双连通分量 \((2,5,6)\) 中有两个割点,则不需要涂黑。

    • 证明:当割点删除后,可以通过另一个割点达到其他点双连通分量。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define sort stable_sort
#define endl '\n'
struct node
{
ll next,to;
}e[400001];
vector<ll>v_dcc[400001];
stack<ll>s;
ll head[400001],dfn[400001],low[400001],cut[400001],cnt,tot,ans;
void add(ll u,ll v)
{
cnt++;
e[cnt].next=head[u];
e[cnt].to=v;
head[u]=cnt;
}
void tarjan(ll x,ll fa)
{
ll i,k=0,son=0;
tot++;
dfn[x]=low[x]=tot;
s.push(x);
for(i=head[x];i!=0;i=e[i].next)
{
if(dfn[e[i].to]==0)
{
tarjan(e[i].to,fa);
low[x]=min(low[x],low[e[i].to]);
if(low[e[i].to]>=dfn[x])
{
son++;
if(x!=fa||son>=2)//求割点
{
cut[x]=1;
}
ans++;
v_dcc[ans].clear();//初始化
v_dcc[ans].push_back(x);
while(e[i].to!=k)
{
k=s.top();
v_dcc[ans].push_back(k);
s.pop();
}
}
}
else
{
low[x]=min(low[x],dfn[e[i].to]);
}
}
}
int main()
{
ll n,m,i,j,u,v,sum=0,num,len,ans1,ans2;
while(cin>>m)
{
if(m==0)
{
break;
}
else
{
n=0;
sum++;
tot=ans=cnt=ans1=0;
ans2=1;
while(s.empty()==0)
{
s.pop();
}
memset(e,0,sizeof(e));//多测不清空,爆零两行泪
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(cut,0,sizeof(cut));
memset(head,0,sizeof(head));
for(i=1;i<=m;i++)
{
cin>>u>>v;
n=max(n,max(u,v));//n的个数需要自己求
add(u,v);
add(v,u);
}
for(i=1;i<=n;i++)
{
if(dfn[i]==0)
{
tarjan(i,i);
}
}
for(i=1;i<=ans;i++)
{
num=0;
len=v_dcc[i].size();
for(j=0;j<len;j++)
{
if(cut[v_dcc[i][j]]==1)//判断是否是割点
{
num++;
}
}
if(num==0)//如果没有割点
{
ans1+=2;
ans2*=(len-1)*len/2;
}
if(num==1)//如果有一个割点
{
ans1++;
ans2*=len-1;
}
}
cout<<"Case "<<sum<<": "<<ans1<<" "<<ans2<<endl;
}
}
return 0;
}

后记

三倍经验 luoguP3225 [HNOI2012] 矿场搭建 | SP16185 BUSINESS - Mining your own business | UVA1108 Mining Your Own Business

UVA1108 Mining Your Own Business 题解的更多相关文章

  1. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. HDU3844 Mining Your Own Business

    HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相 ...

  4. 【LA】5135 Mining Your Own Business

    [算法]点双连通分量 [题解]详见<算法竞赛入门竞赛入门经典训练指南>P318-319 细节在代码中用important标注. #include<cstdio> #includ ...

  5. UVALive 5135 Mining Your Own Business 双连通分量

    据说这是一道Word Final的题,Orz... 原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&a ...

  6. UVA5135 Mining Your Own Business ( 无向图双连通分量)

    题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...

  7. HDU 3844 Mining Your Own Business

    首先,如果图本来就是一个点双联通的(即不存在割点),那么从这个图中选出任意两个点就OK了. 如果这个图存在割点,那么我们把割点拿掉后图就会变得支离破碎了.对于那种只和一个割点相连的块,这个块中至少要选 ...

  8. LA 5135 Mining Your Own Business

    求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...

  9. UVA 1108 - Mining Your Own Business

    刘汝佳书上都给出了完整的代码 在这里理一下思路: 由题意知肯定存在一个或者多个双连通分量: 假设某一个双连通分量有割顶.那太平井一定不能打在割顶上. 而是选择割顶之外的随意一个点: 假设没有割顶,则要 ...

  10. HDU 3844 Mining Your Own Business(割点,经典)

    题意: 给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法. 思路: 要 ...

随机推荐

  1. 【rt-thread】SConscript文件添加格式必须是4空格开头

    SConscript文件添加格式必须是4空格开头,TAB或其他数量的空格均错误

  2. SpringBoot3集成Zookeeper

    标签:Zookeeper3.8 ,Curator5.5: 一.简介 ZooKeeper是一个集中的服务,用于维护配置信息.命名.提供分布式同步.提供组服务.分布式应用程序以某种形式使用所有这些类型的服 ...

  3. MyBatis06——动态SQL

    动态SQL if choose (when, otherwise) trim (where, set) foreach 搭建环境 1.搭建数据库 CREATE TABLE `blog` ( `id` ...

  4. SpringMVC07——Ajax

    Ajax AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. AJA ...

  5. [转帖]Java 提速之 Large pages【译】

    https://juejin.cn/post/7011002046899978253 一.前言 最近花了很多时间在 JVM 的内存预留代码上.它开始是因为我们得到了外部贡献,以支持在 Linux 上使 ...

  6. SQLServer数据库优化学习-总结

    SQLServer数据库优化学习-总结 背景 各种能力都需要提升. 最近总是遇到SQLServer的问题 趁着周末进行一下学习与提高. 安装与优化 1. 数据库必须安装 64位, 不要安装成32位的版 ...

  7. [转帖]FIO – IO压力测试工具

    https://blog.csdn.net/younger_china/article/details/71129541 <存储工具系列文章>主要介绍存储相关的测试和调试工具,包括不限于d ...

  8. [转帖]Linux系统下cpio命令详解

    简介 cpio主要是解压或者将文件压缩到指定文件中即copy-in和copy-out模式. 参数说明 参数 参数说明 -i copy-in模式,解压文件 -o copy-out模式,即压缩文件 -d ...

  9. [转帖]spec2017 安装和使用

    https://zhuanlan.zhihu.com/p/534205632 SPEC成立于1988年,SPEC基准广泛用于评估计算机系统的性能.SPEC CPU套件通过测量几个程序(例如编译器GCC ...

  10. 银河麒麟系统信息获取V1.0版本

    银河麒麟系统信息获取 摘要 最近项目有一些兼容性测试需求. 可能需要获取一些系统配置信息便于相关的工作. 想着自己总结一下. 便于后续的不太熟悉的同事进行简要处理 银河麒麟获取版本 nkvers # ...