题目传送门

题意

在一个无向图上选择尽量少的点涂黑,使得删除任意一个点后,每个连通分量里都至少有一个黑点(多组数据)。

正文

观察题意,发现这是个 Tarjan 求点双连通分量的板子。

考虑在求点双连通分量的时候把割点顺便求出来,令第 \(i\) 个点双连通分量的大小为 \(size_i\),然后进行分类讨论:

  • 当第 \(i\) 个点双连通分量中没有割点时,符合题意则需要涂黑两个点,方案总数增加 \(C_{size_i}^2=\frac{size_i!}{{(size_i-2)}!×2!}=\frac{size_i(size_i-1)}{2}\)。

    • 如图,\((1,2,3,4)\) 为本图的点双连通分量,且没有割点,则在 \((1,2,3,4)\) 中任选两个点涂黑。

  • 当第 \(i\) 个点双连通分量中有 \(1\) 个割点时,若符合题意则需要涂黑一个点(不能将割点涂黑),方案总数增加 \(C_{size_i-1}^1=\frac{(size_i-1)!}{{(size_i-2)}!×1!}=size_i-1\)。

    • 如图,\((1,2,6,3,5),(1,4)\) 为本图的两个点双连通分量,且 \(1\) 为本图的割点,则在 \((2,6,3,5),(4)\) 中各任选出一个点涂黑。

  • 当第 \(i\) 个点双连通分量中的割点个数大于 \(1\) 时,不需要涂黑。

    • 如图,点双连通分量 \((2,5,6)\) 中有两个割点,则不需要涂黑。

    • 证明:当割点删除后,可以通过另一个割点达到其他点双连通分量。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define sort stable_sort
#define endl '\n'
struct node
{
ll next,to;
}e[400001];
vector<ll>v_dcc[400001];
stack<ll>s;
ll head[400001],dfn[400001],low[400001],cut[400001],cnt,tot,ans;
void add(ll u,ll v)
{
cnt++;
e[cnt].next=head[u];
e[cnt].to=v;
head[u]=cnt;
}
void tarjan(ll x,ll fa)
{
ll i,k=0,son=0;
tot++;
dfn[x]=low[x]=tot;
s.push(x);
for(i=head[x];i!=0;i=e[i].next)
{
if(dfn[e[i].to]==0)
{
tarjan(e[i].to,fa);
low[x]=min(low[x],low[e[i].to]);
if(low[e[i].to]>=dfn[x])
{
son++;
if(x!=fa||son>=2)//求割点
{
cut[x]=1;
}
ans++;
v_dcc[ans].clear();//初始化
v_dcc[ans].push_back(x);
while(e[i].to!=k)
{
k=s.top();
v_dcc[ans].push_back(k);
s.pop();
}
}
}
else
{
low[x]=min(low[x],dfn[e[i].to]);
}
}
}
int main()
{
ll n,m,i,j,u,v,sum=0,num,len,ans1,ans2;
while(cin>>m)
{
if(m==0)
{
break;
}
else
{
n=0;
sum++;
tot=ans=cnt=ans1=0;
ans2=1;
while(s.empty()==0)
{
s.pop();
}
memset(e,0,sizeof(e));//多测不清空,爆零两行泪
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(cut,0,sizeof(cut));
memset(head,0,sizeof(head));
for(i=1;i<=m;i++)
{
cin>>u>>v;
n=max(n,max(u,v));//n的个数需要自己求
add(u,v);
add(v,u);
}
for(i=1;i<=n;i++)
{
if(dfn[i]==0)
{
tarjan(i,i);
}
}
for(i=1;i<=ans;i++)
{
num=0;
len=v_dcc[i].size();
for(j=0;j<len;j++)
{
if(cut[v_dcc[i][j]]==1)//判断是否是割点
{
num++;
}
}
if(num==0)//如果没有割点
{
ans1+=2;
ans2*=(len-1)*len/2;
}
if(num==1)//如果有一个割点
{
ans1++;
ans2*=len-1;
}
}
cout<<"Case "<<sum<<": "<<ans1<<" "<<ans2<<endl;
}
}
return 0;
}

后记

三倍经验 luoguP3225 [HNOI2012] 矿场搭建 | SP16185 BUSINESS - Mining your own business | UVA1108 Mining Your Own Business

UVA1108 Mining Your Own Business 题解的更多相关文章

  1. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. HDU3844 Mining Your Own Business

    HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相 ...

  4. 【LA】5135 Mining Your Own Business

    [算法]点双连通分量 [题解]详见<算法竞赛入门竞赛入门经典训练指南>P318-319 细节在代码中用important标注. #include<cstdio> #includ ...

  5. UVALive 5135 Mining Your Own Business 双连通分量

    据说这是一道Word Final的题,Orz... 原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&a ...

  6. UVA5135 Mining Your Own Business ( 无向图双连通分量)

    题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...

  7. HDU 3844 Mining Your Own Business

    首先,如果图本来就是一个点双联通的(即不存在割点),那么从这个图中选出任意两个点就OK了. 如果这个图存在割点,那么我们把割点拿掉后图就会变得支离破碎了.对于那种只和一个割点相连的块,这个块中至少要选 ...

  8. LA 5135 Mining Your Own Business

    求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...

  9. UVA 1108 - Mining Your Own Business

    刘汝佳书上都给出了完整的代码 在这里理一下思路: 由题意知肯定存在一个或者多个双连通分量: 假设某一个双连通分量有割顶.那太平井一定不能打在割顶上. 而是选择割顶之外的随意一个点: 假设没有割顶,则要 ...

  10. HDU 3844 Mining Your Own Business(割点,经典)

    题意: 给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法. 思路: 要 ...

随机推荐

  1. The requested URL could not be retrieved

    在开发过程中,调用对外接口,返回了一长串的标签提示,如下 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "ht ...

  2. 国庆学go,完成了博客基本功能,迫不及待的发布上线了

    大家好,我是沙漠尽头的狼. 国庆7天,利用带娃之余的空闲时间学习了go,并做了一个不是很完善的博客前台网站. 网站发布地址:https://go.dotnet9.com 源码 边做边上传Github, ...

  3. c# 创建一个只接收消息的窗口

    /// <summary> /// WM_COPYDATA消息,进程间传输信息专用结构 /// </summary> public struct COPYDATASTRUCT ...

  4. Go-插入排序

    // InsertSort 插入排序 // 思路: // 1. 第一个元素默认是已经排好序的 // 2. 从第二个元素开始,依次比较前面一个元素中,如果小于则交换位置 // 插入排序思路: 将一个元素 ...

  5. [转帖]MySQL多版本并发控制机制(MVCC)-源码浅析

    https://zhuanlan.zhihu.com/p/144682180 MySQL多版本并发控制机制(MVCC)-源码浅析 前言 作为一个数据库爱好者,自己动手写过简单的SQL解析器以及存储引擎 ...

  6. [转帖]ESXi主机RAID卡_HBA卡_网卡 型号_固件_驱动查询

    https://www.cnblogs.com/vincenshen/p/12332142.html 一.RAID卡/HBA卡 型号_固件_驱动查询 1. 查询所有SCSI设备列表 # esxcfg- ...

  7. [转帖]Nginx reuseport 导致偶发性卡顿

    https://github.com/jonmeredith/tcpperf https://plantegg.github.io/2023/06/08/Nginx%20reuseport%20%E5 ...

  8. [转帖]一个轻量的Linux运维监控脚本

    https://zhuanlan.zhihu.com/p/472040635 写在前面 我的需求 嗯,有几台很老的机器,上面部署的几个很老的应用 我需要每周对机器上的一些内存,磁盘,线程,应用和数据库 ...

  9. java -D的一些学习和使用

    背景 java开发的程序有很多进行配置的方式 可以通过 yaml文件或者是xml文件 也可以通过环境变量的方式. 1. 容器的话可以使用 -e 或者是env进行注入 2. K8S的话可以通过 conf ...

  10. [转帖]技术派-汇编语言指令集(intel X86系列)

    针对汇编语言指令集(intel X86系列8086/80186/80286/80386/80486) AAA - Ascii Adjust for Addition        AAD - Asci ...