PCA分析的疑问
R 与python scikit-learn PCA的主成分结果有部分是反的
- 通过R和python分别计算出来的PCA的结果存在某些主成分的结果是相反的,这些结果是没有问题的,只是表示这个分量被反转了,结果同样是有效的。
- PCA的本质是寻找一条正交的线,这条线应该是可以有不同方向的
数据格式
148 41 72 78
139 34 71 76
160 49 77 86
149 36 67 79
159 45 80 86
142 31 66 76
153 43 76 83
150 43 77 79
151 42 77 80
139 31 68 74
140 29 64 74
161 47 78 84
158 49 78 83
140 33 67 77
137 31 66 73
152 35 73 79
149 47 82 79
145 35 70 77
160 47 74 87
156 44 78 85
151 42 73 82
147 38 73 78
157 39 68 80
147 30 65 75
157 48 80 88
151 36 74 80
144 36 68 76
141 30 67 76
139 32 68 73
148 38 70 78
python计算PCA代码
from sklearn.decomposition import PCA
pca = PCA()
data = pd.read_csv("test.xls",sep="\t")
mda = data.T.values
pca = PCA()
pc = pca.fit_transform(mda)
pd.DataFrame(pc)
R计算PCA代码
test<-data.frame(
X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139,
140, 161, 158, 140, 137, 152, 149, 145, 160, 156,
151, 147, 157, 147, 157, 151, 144, 141, 139, 148),
X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31,
29, 47, 49, 33, 31, 35, 47, 35, 47, 44,
42, 38, 39, 30, 48, 36, 36, 30, 32, 38),
X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68,
64, 78, 78, 67, 66, 73, 82, 70, 74, 78,
73, 73, 68, 65, 80, 74, 68, 67, 68, 70),
X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74,
74, 84, 83, 77, 73, 79, 79, 77, 87, 85,
82, 78, 80, 75, 88, 80, 76, 76, 73, 78)
)
data=t(as.matrix(test))
#'princomp'只能在单位比变量多的情况下使用
data.pr<-princomp(data,cor=TRUE)
#cor是逻辑变量 当cor=TRUE表示用样本的相关矩阵R做主成分分析
当cor=FALSE表示用样本的协方差阵S做主
das = summary(data.pr,loadings=TRUE)
#当样品比比变量少时用fast.prcomp
data.pca = fast.prcomp(data,retx=T,scale=F,center=T)
a = summary(data.pca)
pc = as.data.frame(a$x)
PCA分析的疑问的更多相关文章
- 利用pca分析fmri的生理噪声
A kernel machine-based fMRI physiological noise removal method 关于,fmri研究中,生理噪声去除的价值:一.现在随着技术的提升,高场fm ...
- plink 进行PCA分析
当我们进行群体遗传分析时,得到vcf后,可利用plink进行主成分(PCA)分析: 一.软件安装 1 conda install plink 二.使用流程 第一步:将vcf转换为plink格式 1 p ...
- 从源代码角度分析ViewStub 疑问与原理
一.提出疑问 ViewStub比較简单.之前文章都提及到<Android 性能优化 三 布局优化ViewStub标签的使用>.可是在使用过程中有一个疑惑,究竟是ViewStub上设 ...
- PCA分析和因子分析
#由此说明使用prcomp函数时,必须使用标准化过的原始数据.如果使用没有标准化的raw数据(不是相关系数矩阵或者协方差矩阵),必须将参数scale. = T <result>$sdev ...
- 14、PCA分析
做芯片PCA主成分分析可以选择使用affycoretools包的plotPCA方法,以样品"GSM363445_LNTT.CEL"."GSM362948_LTT.CEL& ...
- PCA分析,及c++代码实现
本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/fengbingchun/article/details/79235028 主成分分析(Principal Co ...
- Eigensoft-smartpca分析PCA报错:warning (mapfile): bad chrom: Segmentation fault
目录 问题 解决 问题 一直以来用Eigensoft的smartpca来做群体遗传的PCA分析很顺畅,结果也比较靠谱. 但今天报错如下: $ ~/miniconda3/bin/smartpca -p ...
- PCA和PCoA
讲解很详细:http://blog.genesino.com/2016/10/PCA/ PCA分析一般流程: 中心化(centering, 均值中心化,或者中位数中心化),定标(scale,如果数据没 ...
- 机器学习:PCA(基础理解、降维理解)
PCA(Principal Component Analysis) 一.指导思想 降维是实现数据优化的手段,主成分分析(PCA)是实现降维的手段: 降维是在训练算法模型前对数据集进行处理,会丢失信息. ...
随机推荐
- UOJ#316. 【NOI2017】泳池 动态规划,Berlekamp-Massey,Cayley-Hamilton定理
原文链接www.cnblogs.com/zhouzhendong/p/UOJ316.html 题解 首先,我们将答案转化成最大矩形大小 \(\leq k\) 的概率 减去 \(\leq k-1\) 的 ...
- ZR#1008
ZR#1008 解法: 直接预处理出来执行完一个完整的串可以到达的位置,然后算出重复的次数直接乘在坐标上,最后处理一下余下的部分就行了. CODE: #include<iostream> ...
- springMvc---WebMvcConfigurationSupport
该类提供了主要的 MVC 配置方法,通过直接继承 WebMvcConfiguration ,并在继承类上 加上 @EnableWebMvc 和 @Configuration 注解之后.便可以在子类中实 ...
- CORS & CSP笔记
1.CORS & CSP 浏览器跨域相关的安全策略主要存在于两个方面: 浏览器是否发送ajax 浏览器是否加载返回数据 假设从a.com 向b.com发送ajax请求.此时浏览器当前页面为a. ...
- 第十一周助教工作总结——NWNU李泓毅
助教博客链接:https://www.cnblogs.com/NWNU-LHY/ 本次作业的要求:原型设计:https://www.cnblogs.com/nwnu-daizh/p/10761596. ...
- T-MAX组--项目冲刺(第六天)
T-MAX组--项目冲刺(第六天) THE SIXTH DAY 项目相关 作业相关 具体描述 所属班级 2019秋福大软件工程实践Z班 作业要求 团队作业第五次-项目冲刺 作业正文 T-MAX组--项 ...
- 范仁义web前端介绍课程---1、课程意义
范仁义web前端介绍课程---1.课程意义 一.总结 一句话总结: 提供的这一整套学习方法和资源,配合艾宾浩斯遗忘曲线等各种复习.学习算法和后续会有的娱乐化学习方式,能否真正做到让学过的东西不再忘记. ...
- [转]OpenGL编程指南(第9版)环境搭建--使用VS2017
1.使用CMake Configure中选择VS2017 Win64 , Finish: 点击Generate. 2.进入build目录 打开GLFW.sln , 生成解决方案. 打开vermilio ...
- 根据udev的信息判断设备物理路径
udev会生成by-path路径,根据这个就可以判断 dev目录下 [toybrick@localhost dev]$ find | grep platform-fe3c0000 ./disk/by- ...
- vuejs2从入门到精通视频教程
https://www.cnblogs.com/web-666/p/8648607.html 一.基础部分 0.课件 1.介绍 2.vue实例 3.模板语法 4.计算属性和观察者 5.Class与St ...