PCA分析的疑问
R 与python scikit-learn PCA的主成分结果有部分是反的
- 通过R和python分别计算出来的PCA的结果存在某些主成分的结果是相反的,这些结果是没有问题的,只是表示这个分量被反转了,结果同样是有效的。
- PCA的本质是寻找一条正交的线,这条线应该是可以有不同方向的
数据格式
148 41 72 78
139 34 71 76
160 49 77 86
149 36 67 79
159 45 80 86
142 31 66 76
153 43 76 83
150 43 77 79
151 42 77 80
139 31 68 74
140 29 64 74
161 47 78 84
158 49 78 83
140 33 67 77
137 31 66 73
152 35 73 79
149 47 82 79
145 35 70 77
160 47 74 87
156 44 78 85
151 42 73 82
147 38 73 78
157 39 68 80
147 30 65 75
157 48 80 88
151 36 74 80
144 36 68 76
141 30 67 76
139 32 68 73
148 38 70 78
python计算PCA代码
from sklearn.decomposition import PCA
pca = PCA()
data = pd.read_csv("test.xls",sep="\t")
mda = data.T.values
pca = PCA()
pc = pca.fit_transform(mda)
pd.DataFrame(pc)
R计算PCA代码
test<-data.frame(
X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139,
140, 161, 158, 140, 137, 152, 149, 145, 160, 156,
151, 147, 157, 147, 157, 151, 144, 141, 139, 148),
X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31,
29, 47, 49, 33, 31, 35, 47, 35, 47, 44,
42, 38, 39, 30, 48, 36, 36, 30, 32, 38),
X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68,
64, 78, 78, 67, 66, 73, 82, 70, 74, 78,
73, 73, 68, 65, 80, 74, 68, 67, 68, 70),
X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74,
74, 84, 83, 77, 73, 79, 79, 77, 87, 85,
82, 78, 80, 75, 88, 80, 76, 76, 73, 78)
)
data=t(as.matrix(test))
#'princomp'只能在单位比变量多的情况下使用
data.pr<-princomp(data,cor=TRUE)
#cor是逻辑变量 当cor=TRUE表示用样本的相关矩阵R做主成分分析
当cor=FALSE表示用样本的协方差阵S做主
das = summary(data.pr,loadings=TRUE)
#当样品比比变量少时用fast.prcomp
data.pca = fast.prcomp(data,retx=T,scale=F,center=T)
a = summary(data.pca)
pc = as.data.frame(a$x)
PCA分析的疑问的更多相关文章
- 利用pca分析fmri的生理噪声
A kernel machine-based fMRI physiological noise removal method 关于,fmri研究中,生理噪声去除的价值:一.现在随着技术的提升,高场fm ...
- plink 进行PCA分析
当我们进行群体遗传分析时,得到vcf后,可利用plink进行主成分(PCA)分析: 一.软件安装 1 conda install plink 二.使用流程 第一步:将vcf转换为plink格式 1 p ...
- 从源代码角度分析ViewStub 疑问与原理
一.提出疑问 ViewStub比較简单.之前文章都提及到<Android 性能优化 三 布局优化ViewStub标签的使用>.可是在使用过程中有一个疑惑,究竟是ViewStub上设 ...
- PCA分析和因子分析
#由此说明使用prcomp函数时,必须使用标准化过的原始数据.如果使用没有标准化的raw数据(不是相关系数矩阵或者协方差矩阵),必须将参数scale. = T <result>$sdev ...
- 14、PCA分析
做芯片PCA主成分分析可以选择使用affycoretools包的plotPCA方法,以样品"GSM363445_LNTT.CEL"."GSM362948_LTT.CEL& ...
- PCA分析,及c++代码实现
本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/fengbingchun/article/details/79235028 主成分分析(Principal Co ...
- Eigensoft-smartpca分析PCA报错:warning (mapfile): bad chrom: Segmentation fault
目录 问题 解决 问题 一直以来用Eigensoft的smartpca来做群体遗传的PCA分析很顺畅,结果也比较靠谱. 但今天报错如下: $ ~/miniconda3/bin/smartpca -p ...
- PCA和PCoA
讲解很详细:http://blog.genesino.com/2016/10/PCA/ PCA分析一般流程: 中心化(centering, 均值中心化,或者中位数中心化),定标(scale,如果数据没 ...
- 机器学习:PCA(基础理解、降维理解)
PCA(Principal Component Analysis) 一.指导思想 降维是实现数据优化的手段,主成分分析(PCA)是实现降维的手段: 降维是在训练算法模型前对数据集进行处理,会丢失信息. ...
随机推荐
- [golang]golang如何覆盖输出console,实现进度条;golang一个骚气的进度提示库
[golang]golang如何覆盖输出console,实现进度条 package main import( "fmt" "os" "time&quo ...
- video标签在浏览器不能使用的问题 ?
之前video标签是可以用的,但是压缩之后在移动端可以用,在pc浏览器不可以用? 怎么解决? 这样的写法会报错 说是缺乏source 但是你加上source也没有用 <video src=& ...
- Spring mybatis thymeleaf 基础操作,实现数据展示,修改,删除,查询
目录结构如图 index.html <!DOCTYPE html> <html lang="en" xmlns:th="http://www.thyme ...
- CSS显示模式
div和span标签 1.容器级的标签中可以嵌套其他所有的标签(div->一般用于配合CSS完成网页的基本布局.h.ul.ol.dl.li.dt.dd......),文本级的标签中只能嵌套文字/ ...
- Perl字符贪吃蛇
一时兴起,想试试能不能用perl实现字符贪吃蛇,算法如下: 定义2个数组@bg.@snake,@bg用来显示整个界面,@snake从蛇头开始保存蛇的坐标点. 蛇每移动一次,新的坐标点放到@snake头 ...
- Mono Features of cheat engine
If you attach to a process/game that uses mono, you should see a new "Mono" menu item on t ...
- Android分区解释
让我们从Android手机和平板电脑的标准内存分区列表开始.分区有:/boot/system/recovery/data/cache/misc 此外,有SD卡的分区./sdcard/sd-ext 请注 ...
- JVM 初始化阶段的重要意义分析
1.创建一个Mytest6类和Singleton类 public class MyTest6 { public static void main(String[] args) { Singleton ...
- PHP异步非阻塞fsockopen(本地可以非阻塞请求,服务器就一直执行异步的不成功) (未解决)
index.php /** * php异步请求 * * @param $host string 主机地址 * @param $path string 路径 * @param $param array ...
- [转]BigDecimal使用(整理)
原文地址:https://www.jianshu.com/p/2947868d76eb 应用场景 大多数的商业计算中,一般采用java.math.BigDecimal类来进行精确计算.比如:货币 使用 ...