NOIP2017[提高组] 宝藏 题解





解析
我们观察范围可以发现n非常的小,(一般来说不是搜索就是状压dp)所以说对于这题我们可以用记忆化搜索或者dp,我们发现起点不同那么最终答案也就不同,也就是说答案是跟起点有关的,于是我们便可以想到去枚举每个起点,那么我们可以定义状态 $ f[i] $ 表示当前状态为 $ i $ 的时候最小花费,那么我们可以写出状态转移方程
$ f[x|(1<<(j-1))]=min(f[x]+dis[i]* d[i][j],f[x|(1<<(j-1))]) $
((1<<(j-1))&x)==0 && $ d[i][j]!=INF $)
其中x表示当前状态,当前状态中 $ j $ 号宝藏屋还没开发,并且 $ i->j $有路, $ dis[i] $ 表示 i 是第几个开发的。
代码
#include<bits/stdc++.h>
using namespace std;
const int INF=1<<30;
int n,m,u,v,z,ans=INF,d[25][25],dis[25],f[10100];
void find(int x){
for(int i=1;i<=n;i++){
if((1<<(i-1))&x){//在x这个状态中i已经开发了
for(int j=1;j<=n;j++){
if(((1<<(j-1))&x)==0&&d[i][j]!=INF){//j未开发且i可以到j
if(f[x|(1<<(j-1))]>f[x]+dis[i]*d[i][j]){
int tmp=dis[j];
dis[j]=dis[i]+1;
f[x|(1<<(j-1))]=f[x]+dis[i]*d[i][j];
find(x|(1<<(j-1)));
dis[j]=tmp;//回溯
}
}
}
}
}
}
int main(){
scanf("%d %d",&n,&m);
for(int i=1;i<=n;++i){//初始化
for(int j=1;j<=n;++j){
d[i][j]=INF;
}
}
for(int i=1;i<=m;++i){//m<=1000所以会有重复路径
scanf("%d %d %d",&u,&v,&z);
d[u][v]=min(d[u][v],z);
d[v][u]=min(d[v][u],z);
}
for(int o=1;o<=n;++o){//枚举起点
for(int i=1;i<=n;++i) dis[i]=INF;
for(int i=1;i<=(1<<n)-1;++i) f[i]=INF;//初始化
dis[o]=1;//第一个
f[1<<(o-1)]=0;
find(1<<(o-1));
ans=min(ans,f[(1<<n)-1]);
}
printf("%d",ans);
return 0;
}
/*
4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 1
*/
NOIP2017[提高组] 宝藏 题解的更多相关文章
- 【题解】NOIP2017 提高组 简要题解
[题解]NOIP2017 提高组 简要题解 小凯的疑惑(数论) 不讲 时间复杂度 大力模拟 奶酪 并查集模板题 宝藏 最优解一定存在一种构造方法是按照深度一步步生成所有的联通性. 枚举一个根,随后设\ ...
- 题解 [NOIP2017 提高组]宝藏
传送门 这是蓝书上状压的例题啊,怎么会出现在模拟赛里 不过就算原题我也没把握写对 核心思路: 先令\(dp[s]\)为当前状态为\(s\)时的总花费最小值,\(cnt[s][i]\)为这个方案中由根节 ...
- NOIP2017提高组day2T1题解(奶酪)
题目链接:奶酪 这道题还是很水的,在下拿了满分. 并没有用什么高级的算法,我讲一下基本思路. 我们把每个洞都视为一个节点. 我们读入相关数据后,就先进行预处理,通过每个节点的信息和题目的规定,建立一张 ...
- [NOIp2017提高组]宝藏
#include<cstdio> #include<cctype> #include<algorithm> inline int getint() { regist ...
- [NOIP2017 提高组] 宝藏
考虑到这种对于某种操作顺序有一个权值. 且这个权值有一个\(O(n)\)或者更好的复杂度求出. 求最值. 那可以用模拟退火. #include<iostream> #include< ...
- [NOIp2017提高组]列队
[NOIp2017提高组]列队 题目大意 一个\(n\times m(n,m\le3\times10^5)\)的方阵,每个格子里的人都有一个编号.初始时第\(i\)行第\(j\)列的编号为\((i-1 ...
- JZOJ 5196. 【NOIP2017提高组模拟7.3】B
5196. [NOIP2017提高组模拟7.3]B Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...
- JZOJ 5197. 【NOIP2017提高组模拟7.3】C
5197. [NOIP2017提高组模拟7.3]C Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...
- JZOJ 5195. 【NOIP2017提高组模拟7.3】A
5195. [NOIP2017提高组模拟7.3]A Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...
随机推荐
- JavaScript substr() 方法
定义和用法 substr() 方法可在字符串中抽取从 start 下标开始的指定数目的字符. 语法 stringObject.substr(start,length) 参数 描述 start 必需.要 ...
- mysql 使用的三个小技巧
mysql 使用的三个小技巧 快速阅读 Mysql查询工具中如何查询多条语名,Mysql中如何设置变量,Mysql中如何查特定字段,后面再加* Mysql查询工具中如何查询多条语名 默认myslq只能 ...
- OSG学习笔记0——解决OSG读obj模型问题[转]
原文:https://blog.csdn.net/u011310341/article/details/51179948 #include "stdafx.h" #include& ...
- CMU Database Systems - Indexes
这章主要描述索引,即通过什么样的数据结构可以更加快速的查询到数据 介绍Hash Tables,B+tree,SkipList 以及索引的并行访问 Hash Tables hash tables可以实现 ...
- SQLite与MySQL区别
原文链接:https://blog.csdn.net/zbw1185/article/details/47975965简单来说,SQLITE功能简约,小型化,追求最大磁盘效率:MYSQL功能全面,综合 ...
- TCP为什么会出现 RST
就目前遇到的情况而言,都是负载设备,或健康检查设备发送的. 为什么会出现 RST 因为具有周期性,我大概猜到了,是 lvs 对我的后端服务的健康检查导致的,联系了网络运营服务客服人员,我把.pcap给 ...
- 解决Wireshark安装Npcap组件失败
解决Wireshark安装Npcap组件失败 从Wireshark 3.0开始,Npcap取代Winpcap组件,成为Wireshark默认的网卡核心驱动.由于该组件属于驱动程序,所以安装时候容易 ...
- layuiadmin(iframe)常用问题集锦
1. 弹出窗口中传值给父层表单 table.on('tool(tableList)', function(obj){ var selected = obj.data; var layEvent = o ...
- vue---lodash的使用
Lodash就是这样的一套工具库,它内部封装了诸多对字符串.数组.对象等常见数据类型的处理函数,其中部分是目前ECMAScript尚未制订的规范,但同时被业界所认可的辅助函数.莫倩每天使用npm安装L ...
- 003-guava 集合-不可变集合
一.概述 二.使用 2.1.不可变集合 1.为什么使用不可变集合 不可变对象有很多优点,包括: 当对象被不可信的库调用时,不可变形式是安全的:不可变对象被多个线程调用时,不存在竞态条件问题不可变集合不 ...