Pandas的安装

MAC

pip3 install pandas

若遇到管理员权限问题,加上sudo

接下来我们开始使用pandas

我们先构建一个一维序列:

s = pd.Series( [3, -5, 7, 4], index=['a', 'b', 'c', 'd'] )

接下来,我们打印pandas的另外一种数据形式, DataFrame

A two-dimensional labelled data structure with columns of potentially different types

使用代码构建如上所示的数据形式

  data = {

  'Country'     :  ['Belgium','India','Brazil'],
  'Capital'      :  ['Brussels','New Delhi','Brasilia'],
  'Population' :   [11190846,1303171035,207847528]

  }

  df = pd.DataFrame(data, columns=['Country','Capital','Population'])

打印结果如下:

一些简单的数据操作:

df.index     行索引

df.columns 列索引

df.values    显示数值

df.describe()

行列互换                              df.T

列名排序(columns)              df.sort_index(axis=1, ascending = False )

行名排序(rows)                     df.sort_index(axis=0, ascending = False)

对指定的列名进行排序           df.sort_values(by='Population') 

drop values from rows          s.drop(['a' , 'c'])   

drop values from columns     df.drop('Country', axis=1)

二、Pandas 选择数据

#select by label

选择第0,1行

df.loc[[0,1]]

选择'Country', 'Capital'列

选择第0行,第'Country'列

#select by position

选择固定数值 df.iloc[0,0]

选择Position行,第0列

切片      df.iloc[[1:2],[2:3]]

选择某行 df.iloc[0]

mixed方式          df.ix[[1,2],'Country']]

筛选数值  选择人口大于11190846的数值

df[df.Population>100000]

修改数值

将df的第二行,第二列修改为test

使用position:

df.iloc[2,2] = 'test'

使用label:

df.loc[2,'Capital'] = 'test'

另外一种修改数值的方法是比较大小:

df.Population[df.Population>10000] = 0

将Population列中数值大于10000的修改为0

Pandas处理丢失数据

去除任意一行,有空值:

df.dropna(axis=0, how='any')

去除任意一列,有空值:

df.dropna(axis=1, how='any')

将any改为all,意味着只有当所有的都是nan的时候,才能删除

填充值, 将nan填充为0:

df.fillna(value=0)

判断是否有缺失值:

df.isnull()

np.any(df.isnull()) == True

df.isnull()

读取文件和导入文件

读取:

data = pd.read_csv('student.csv',index_col='id')

导出:

data.to_csv('output.csv')

Pandas学习的更多相关文章

  1. 用scikit-learn和pandas学习线性回归

    对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...

  2. Pandas 学习笔记

    Pandas 学习笔记 pandas 由两部份组成,分别是 Series 和 DataFrame. Series 可以理解为"一维数组.列表.字典" DataFrame 可以理解为 ...

  3. Python pandas学习总结

    本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写 ...

  4. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  5. pandas学习(创建多层索引、数据重塑与轴向旋转)

    pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或 ...

  6. pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)

    pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...

  7. pandas学习(创建数据,基本操作)

    pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...

  8. pandas 学习总结

    pandas  学习总结 作者:csj 更新时间:2018.04.02 shenzhen email:59888745@qq.com home: http://www.cnblogs.com/csj0 ...

  9. 用 scikit-learn 和 pandas 学习线性回归

      用 scikit-learn 和 pandas 学习线性回归¶ from https://www.cnblogs.com/pinard/p/6016029.html 就算是简单的算法,也需要跑通整 ...

  10. pandas学习系列(一):时间序列

    最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库 发现pandas库功能的确很强大,因此在这记录我的pandas学习之路. # -*- cod ...

随机推荐

  1. WPF,ComboBox,取汉字首字母,extBoxBase.TextChanged

    1取汉字汉语拼音首字母: private static string GetFirstLetterOfChineseString(string CnChar) { long iCnChar; byte ...

  2. 【C#夯实】我与接口二三事:IEnumerable、IQueryable 与 LINQ

    序 学生时期,有过小组作业,当时分工一人做那么两三个页面,然而在前端差不多的时候,我和另一个同学发生了争执.当时用的是简单的三层架构(DLL.BLL.UI),我个人觉得各写各的吧,到时候合并,而他觉得 ...

  3. 让windows 10 家庭版 支持 Hyper-v 的方法

    pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt for /f ...

  4. 微信小程序使用websocket通讯的demo,含前后端代码,亲测可用

    目录 0.概述websocket 1.app.js写法 2.后台写法 0.概述websocket (1) 个人总结:后台设置了websocket地址,服务器开启后等待有人去连接它. 一个客户端一打开就 ...

  5. 互联网渗透测试之Wireshark的高级应用

    互联网渗透测试之Wireshark的高级应用 1.1说明 在本节将介绍Wireshark的一些高级特性 1.2. "Follow TCP Stream" 如果你处理TCP协议,想要 ...

  6. SpringBoot的学习一:入门篇

    SpringBoot是什么: SpringBoot是Spring项目中的一个子工程,是一个轻量级框架. SpringBoot框架中有两个个非常重要的策略:开箱即用和约定优于配置 一.构建工程 1.开发 ...

  7. 安装教程-Xshell 5 远程连接工具的安装

    Xshell 5 远程连接工具的安装 1.实验描述 物理机中安装 Xshell 5 ,为实现 Linux 等操作系统提供远程连接的环境. 2.实验环境 物理机系统:Windows 10 企业版 3.实 ...

  8. IntelliJ IDEA设置主题和背景图片(背景色)

    设置主题以及背景图片 设置代码背景颜色

  9. 论文阅读笔记六十一:Selective Kernel Networks(SKNet CVPR2019)

    论文原址:https://arxiv.org/pdf/1903.06586.pdf github: https://github.com/implus/SKNet 摘要 在标准的卷积网络中,每层网络中 ...

  10. reactjs中配置代理跨域

    第一步,下载依赖 http-proxy-middleware yarn add http-proxy-middleware 第二步,在src下建立setupProxy.js const proxy = ...