Pandas的安装

MAC

pip3 install pandas

若遇到管理员权限问题,加上sudo

接下来我们开始使用pandas

我们先构建一个一维序列:

s = pd.Series( [3, -5, 7, 4], index=['a', 'b', 'c', 'd'] )

接下来,我们打印pandas的另外一种数据形式, DataFrame

A two-dimensional labelled data structure with columns of potentially different types

使用代码构建如上所示的数据形式

  data = {

  'Country'     :  ['Belgium','India','Brazil'],
  'Capital'      :  ['Brussels','New Delhi','Brasilia'],
  'Population' :   [11190846,1303171035,207847528]

  }

  df = pd.DataFrame(data, columns=['Country','Capital','Population'])

打印结果如下:

一些简单的数据操作:

df.index     行索引

df.columns 列索引

df.values    显示数值

df.describe()

行列互换                              df.T

列名排序(columns)              df.sort_index(axis=1, ascending = False )

行名排序(rows)                     df.sort_index(axis=0, ascending = False)

对指定的列名进行排序           df.sort_values(by='Population') 

drop values from rows          s.drop(['a' , 'c'])   

drop values from columns     df.drop('Country', axis=1)

二、Pandas 选择数据

#select by label

选择第0,1行

df.loc[[0,1]]

选择'Country', 'Capital'列

选择第0行,第'Country'列

#select by position

选择固定数值 df.iloc[0,0]

选择Position行,第0列

切片      df.iloc[[1:2],[2:3]]

选择某行 df.iloc[0]

mixed方式          df.ix[[1,2],'Country']]

筛选数值  选择人口大于11190846的数值

df[df.Population>100000]

修改数值

将df的第二行,第二列修改为test

使用position:

df.iloc[2,2] = 'test'

使用label:

df.loc[2,'Capital'] = 'test'

另外一种修改数值的方法是比较大小:

df.Population[df.Population>10000] = 0

将Population列中数值大于10000的修改为0

Pandas处理丢失数据

去除任意一行,有空值:

df.dropna(axis=0, how='any')

去除任意一列,有空值:

df.dropna(axis=1, how='any')

将any改为all,意味着只有当所有的都是nan的时候,才能删除

填充值, 将nan填充为0:

df.fillna(value=0)

判断是否有缺失值:

df.isnull()

np.any(df.isnull()) == True

df.isnull()

读取文件和导入文件

读取:

data = pd.read_csv('student.csv',index_col='id')

导出:

data.to_csv('output.csv')

Pandas学习的更多相关文章

  1. 用scikit-learn和pandas学习线性回归

    对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...

  2. Pandas 学习笔记

    Pandas 学习笔记 pandas 由两部份组成,分别是 Series 和 DataFrame. Series 可以理解为"一维数组.列表.字典" DataFrame 可以理解为 ...

  3. Python pandas学习总结

    本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写 ...

  4. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  5. pandas学习(创建多层索引、数据重塑与轴向旋转)

    pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或 ...

  6. pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)

    pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...

  7. pandas学习(创建数据,基本操作)

    pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...

  8. pandas 学习总结

    pandas  学习总结 作者:csj 更新时间:2018.04.02 shenzhen email:59888745@qq.com home: http://www.cnblogs.com/csj0 ...

  9. 用 scikit-learn 和 pandas 学习线性回归

      用 scikit-learn 和 pandas 学习线性回归¶ from https://www.cnblogs.com/pinard/p/6016029.html 就算是简单的算法,也需要跑通整 ...

  10. pandas学习系列(一):时间序列

    最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库 发现pandas库功能的确很强大,因此在这记录我的pandas学习之路. # -*- cod ...

随机推荐

  1. 一句DELETE引发的加班(Mysql 恢复Delete删除的数据)

    本机用的Navicat连mysql测试DB又连了正式DB,因为本地与正式要频繁操作所以都打开了很多查询,本来要DELETE删除测试DB的数据,没看清在正式环境执行了.共删除了325条数据,然后在网上找 ...

  2. maven 学习---Maven配置之pom文件配置包含和排除测试

    本文地址:http://blog.csdn.net/wirelessqa/article/details/14057083 包含(Inclusions )默认情况下Surefire Plugin会自动 ...

  3. HeadFirst设计模式---装饰者

    定义装饰者模式 装饰者模式动态地将责任附加到对象上,若要扩展功能,装饰者提供了比继承更有弹性的替代方案.这句话摘自书中,给人读得很生硬难懂.通俗地来说,装饰者和被装饰者有相同的父类,装饰者的行为组装着 ...

  4. [20190507]sga_target=0注意修改_kghdsidx_count设置.txt

    [20190507]sga_target=0注意修改_kghdsidx_count设置.txt --//昨天遇到一例视图定义太复杂导致长时间分析sql语句出现library cache lock等待事 ...

  5. Prometheus node_exporter grafana部署安装

    1.环境 centos7 prometheus-2.10.0.linux-amd64.tar.gz node_exporter-0.18.1.linux-amd64.tar.gz 2.安装 创建sys ...

  6. 【Java】理解ClassNotFoundException与NoClassDefFoundError的区别

    一.概念上的认识 1)Exception与Error的区别 1.Exception的出现不会导致程序结束,用户程序可以捕获该异常 2.Error的出现会导致程序结束,用户程序无法捕获Error错误 2 ...

  7. 服务器学习--Linux、CentOS下安装zip与unzip指令

    Linux下安装zip解压功能 Linux服务器上一般默认没是没有有安装zip命令 安装zip指令 apt-get install zip 或  yum install zip 输入zip OK li ...

  8. 3-11 group操作拓展

    In [1]: import pandas as pd import numpy as np df=pd.DataFrame({'A':['foo','bar','foo','bar', 'foo', ...

  9. ubuntu 16.04中limit 修改

    第一,修改/etc/security/limits.conf: * soft nproc 65535* hard nproc 65535* soft nofile 65535* hard nofile ...

  10. Arbitrage POJ - 2240

    题目链接:https://vjudge.net/problem/POJ-2240 思路:判正环,Bellman-ford和SPFA,floyd都可以,有正环就可以套利. 这里用SPFA,就是个板子题吧 ...