【洛谷】P1275 魔板(暴力&思维)
题目描述
有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格。每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗)。我们可以通过若干操作使魔板从一个状态改变为另一个状态。操作的方式有两种:
(1)任选一行,改变该行中所有灯泡的状态,即亮的变暗、暗的变亮;
(2)任选两列,交换其位置。
当然并不是任意的两种状态都可以通过若干操作来实现互相转化的。
你的任务就是根据给定两个魔板状态,判断两个状态能否互相转化。
输入格式
文件中包含多组数据。第一行一个整数k,表示有k组数据。
每组数据的第一行两个整数n和m。(0<n,m≤100)
以下的n行描述第一个魔板。每行有m个数字(0或1),中间用空格分隔。若第x行的第y个数字为0,则表示魔板的第x行y列的灯泡为“亮”;否则为“暗”。
然后的n行描述第二个魔板。数据格式同上。
任意两组数据间没有空行。
输出格式
共k行,依次描述每一组数据的结果。
若两个魔板可以相互转化,则输出YES,否则输出NO。(注意:请使用大写字母)
输入输出样例
输入
2
3 4
0 1 0 1
1 0 0 1
0 0 0 0
0 1 0 1
1 1 0 0
0 0 0 0
2 2
0 0
0 1
1 1
1 1
输出
YES
NO
分析
一直以为是个结论题没想到居然是个暴力枚举的。。。。。。
先来手玩一下就可以发现(并不,所以每行最多只有可能变换一次,不然就换回来了。
所以每一行就会有两种情况,变和不变
然后yyq暴力2^n枚举每行的变化情况加剪枝大力出奇迹过了这个题

其实除了2^n枚举之外,还有一种枚举方法
对于每一列来说,列的变换不会改变数字
先假设能成功
那么如果我们知道第1个矩阵中的某一列经过变换后成为第2个矩阵的某一列,
那我们就可以通过比较两个列哪些数字不同,推出哪些行是变换了的
所以我们直接去枚举第1个矩阵中的第一列经过变换后成为第2个矩阵的第i列
然后推出哪些行是变换了,进而n^3判断剩下的列是否可行。
如果全都不行则无解
复杂度是O(kn^4),开开O2应该可以过
我不信你100张牌能秒我???(雾
代码
#include<cstdio>
#include<cstring>
int T,n,m,rev[],vis[],nw[][],nx[][];
bool check(int x)
{
memset(vis,,sizeof vis);vis[x]=;
for(int j=;j<=m;j++)
{
int flag=;
for(int k=;k<=m;k++)if(!vis[k])
{
flag=;
for(int i=;i<=n;i++)flag&=(nw[i][j]==(rev[i]^nx[i][k]));
if(flag){vis[k]=;break;}
}
if(!flag)return ;
}
return ;
}
int main()
{
for(scanf("%d",&T);T;T--)
{
scanf("%d%d",&n,&m);int flag=;
for(int i=;i<=n;i++)for(int j=;j<=m;j++)scanf("%d",&nw[i][j]);
for(int i=;i<=n;i++)for(int j=;j<=m;j++)scanf("%d",&nx[i][j]);
for(int i=;i<=m&&!flag;i++)
{
memset(rev,,sizeof rev);
for(int j=;j<=n;j++)rev[j]=(nw[j][]!=nx[j][i]);
flag=check(i);
}
if(flag)puts("YES");else puts("NO");
}
}
【洛谷】P1275 魔板(暴力&思维)的更多相关文章
- 洛谷P1275 魔板
P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...
- 洛谷 P1275 魔板
P1275 魔板 题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状 ...
- [洛谷P2730] 魔板 Magic Squares
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...
- 洛谷P2730 魔板 [广搜,字符串,STL]
题目传送门 魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有 ...
- 洛谷 P2730 魔板 Magic Squares 解题报告
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- 洛谷 P2730 魔板 Magic Squares
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- 洛谷 - P2730 - 魔板 Magic Squares - bfs
写状态转移弄了很久,老了,不记得自己的数组是怎么标号的了. #include <bits/stdc++.h> using namespace std; #define ll long lo ...
- 【题解】魔板—洛谷P1275。
话说好久没更博了. 最近学了好多知识懒的加进来了. 有幸认识一位大佬. 让我有了继续更博的兴趣. 但这是一个旧的题解. 我在某谷上早就发过的. 拿过来直接用就当回归了吧. 其实这道题有一个特别关键的思 ...
- P1275 魔板
题目描述 有这样一种魔板:它是一个长方形的面板,被划分成n行m列的n*m个方格.每个方格内有一个小灯泡,灯泡的状态有两种(亮或暗).我们可以通过若干操作使魔板从一个状态改变为另一个状态.操作的方式有两 ...
随机推荐
- Linux下使用nextcloud搭建个人网盘
市面上有那么多的网盘服务提供商,为什么还要自己搭建网盘呢?主要有以下原因: 免费的网盘都有种种限制,要么不限速容量小(onedriver,google driver),要么容量大限速(百度云) 付费网 ...
- [React] 函数定义组件
函数定义组件的例子 function Welcome(props) { return <h1>Hello, {props.name}</h1>; } 该函数是一个有效的 Rea ...
- SSRF绕过IP限制方法总结
SSRF绕过IP限制方法总结 - Summary of SSRF methods for bypassing IP restrictions -https://www.cnblogs.com/iAmS ...
- Python学习笔记【1】
1.%r和%s的区别 (1)stackflow 上面的一个解答 (2) x = "There are %d types of people." %10 binary = " ...
- oracle批量操作
https://stackoverflow.com/questions/39576/best-way-to-do-multi-row-insert-in-oracle 1 批量insert 方式一: ...
- out string
示例 当希望方法返回多个值时,声明 out 方法很有用.使用 out 参数的方法仍然可以将变量用作返回类型(请参见 return),但它还可以将一个或多个对象作为 out 参数返回给调用方法.此示例使 ...
- Python日记(二):Python之禅
The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Si ...
- 系统调用IO和标准IO
目录 1. 系统调用IO(无缓冲IO) 系统调用 常用系统调用IO函数 open close read write lseek ioctl 2. 标准IO(带缓冲IO) 概述 缓冲与冲洗 常用标准IO ...
- ISCC之web2
Php代码审计 PHP代码 <?php error_reporting(0); require 'flag.php'; $value = $_GET['value']; $password = ...
- IDEA实用教程(十一)—— 使用Maven创建JavaSE项目
第一步 第二步 在IDEA中,我们常用三种骨架 org.apache.maven.archetypes:maven-archetype-quickstart : 打包方式为jar org.apache ...