1、hive抓取策略
    hive.fetch.task.conversion = more/none
    more不走mr,none走mr
 
2、explain 显示执行计划
 
3、设置本地运行模式
    set hive.exec.mode.local.auto = true
    hive.exec.mode.local.inputbytes.max 默认128M,表示加载文件的最大值,若大于该配置仍会以集群方式运行
 
4、并行计算
    Set hive.exec.parallel = true/falses
    Set hive.exec.parallel.thread.number    默认8个
 
5、严格模式
    set hive.mapred.mode = strict/nonstrict
    限制查询:
  • 对于分区表,必须添加where对于分区字段的过滤条件
  • order by语句必须包含limit输出限制
  • 限制执行笛卡尔积的查询
 
6、hive排序
  • order by:对于查询结果做全排序,只允许一个reduce处理(当数据量较大时,慎用。严格模式下,必须结合limit来使用)
  • sort by:对于单个reduce的数据进行排序
  • distribute by:分区排序,经常和sort by结合使用
  • cluster by:相当于sort by+distribute by
    •   cluster by不能通过asc、desc的方式指定排序顺序,可通过distribute by column sort by column asc|desc的方式
 
7、hive join
  • join计算时,将小表(驱动表)放在join的左边
  • Map join:在map端完成join
    •   SQL方式:在sql语句中添加map join的标记(mapjoin hint)

      •   语法:select /* MAPJOIN(b) */ a.key, a.value from a join b on a.key = b.key
    •   自动的mapjion

      • 通过以后配置启用自动的mapjion

          •   set hive.auto.convert.join = true (为true时,hive自动对左边的表统计量,如果时小表就加入内存,即对小表启动mapjion)
          •   hive.mapjion.smalltable.filesize 默认25M
          •   Hive.ignore.mapjion.hint 是否忽略maojoin hint的标
  • 尽可能使用相同的连接键(转化为一个mr)
  • 大表join大表 (不一定有用)
    • 空key过滤:有时join超时是因为某些key对应的数据太多,而相同key对应的数据都会发送到相同的reducer上,从而导致内存不够。此时我们应该仔细分析这些异常的key,很多情况下,这些key对应的数据是异常数据,我们需要在SQL语句中进行过滤。
    • 空key转换:有时虽然某个key为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join的结果中,此时我们可以表a中key为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的reducer上
 
8、map-side聚合
  • 通过设置参数开启map端的聚合:set hive.map.aggr=true
  • hive.groupby.mapaggr.checkinterval  —map端gourp by执行聚合时处理的多少行数据(默认100000)
  • hive.map.aggr.hash.min.reduction  —进行聚合的最小比例(预先对100000条数据做聚合,若聚合之后的数据量/100000的值大于配置的0.5,则不会聚合)
  • hive.map.aggr.hash.percentmemory —map端聚合使用的内存最大值
  • hive.map.aggr.hash.force.flush.memory.threshold —map端做聚合操作时hash表的最大可用内容,大于该值出发flush
  • hive.groupby.skewindata — 是否对groupby产生的数据倾斜做优化。默认false,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
 
9、合并小文件 文件数据小,容易在文件存储端造成压力,给hdfs造成压力,影响效率
  • 设置合并属性

    • 是否合并map输出文件:hive.merge.mapfiles=true
    • 是否合并reduce输出文件:hive.merge.mapredfiles=true
    • 合并文件的大小:hive.merge.size.per.task=256*1000*1000
 
10、去重统计:数据量小的时候无所谓,数据量大的情况下,由于COUNT DISTINCT操作需要用一个Reduce Task来完成,这一个Reduce需要处理的数据量太大,就会导致整个Job很难完成,一般COUNT DISTINCT使用先GROUP BY再COUNT的方式替换
 
11、控制hive中map以及reduce的数量
  • Map数量相关的参数

    • mapred.max.split.size 每个split的最大值,即每个map处理文件的最大值
    • mapred.min.split.size.per.node 一个节点上split的最小值
    • mapred.min.split.size.per.rack 一个机架上split的最小值
  • reduce数量相关的参数
    • mapred.reduce.tasks 强制指定reduce任务的数量
    • hive.exec.reducers.bytes.per.reduce 每个reduce任务处理的数据量
    • hive.exec.reduce.max 每个任务最大的reduce书
 
12、hive-JVM重用
    • 适用场景

      • 小文件个数过多
      • task个数过多
    • 通过set mapred.job.reuse.jvm.num.tasks=n来设置
      •   缺陷:设置开启之后,task插槽会一直占用资源,无论是否有task运行,直到所有的task即整个job全部执行完成时,才会释放所有的task插槽的资源

hive工作中的一些优化策略的更多相关文章

  1. 在 Android开发中,性能优化策略十分重要

    在 Android开发中,性能优化策略十分重要本文主要讲解性能优化中的布局优化,希望你们会喜欢.目录 示意图 1. 影响的性能 布局性能的好坏 主要影响 :Android应用中的页面显示速度 2. 如 ...

  2. HBase工作中的一些优化方法

    1.表的设计 Pre-creating Regions(预分区) 默认情况下,在创建Hbase表的时候会自动创建一个region分区,当导入数据的时候,所有的Hbase客户端都向这一个region写数 ...

  3. 大型系统中使用JMS优化技巧–Sun OpenMQ

    我们先来看看在Sun OpenMQ系统中 一个持久.可靠的方式传送消息的步骤是怎么样的,如图所示: 查看大图请点击这里 在传送过程中,系统处理JMS消息分为以下两类:   ■ 有效负荷消息,由生成方发 ...

  4. 【转载】大型系统中使用JMS优化技巧

    [本文转自:http://www.javabloger.com/article/sun-openmq-jms-large-scale-systems.html] 我们先来看看在Sun OpenMQ系统 ...

  5. 【SQL系列】深入浅出数据仓库中SQL性能优化之Hive篇

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[SQL系列]深入浅出数据仓库中SQL性能优化之 ...

  6. Hive(六)hive执行过程实例分析与hive优化策略

    一.Hive 执行过程实例分析 1.join 对于 join 操作:SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.useri ...

  7. Hive整体优化策略

    一 整体架构优化 现在hive的整体框架如下,计算引擎不仅仅支持Map/Reduce,并且还支持Tez.Spark等.根据不同的计算引擎又可以使用不同的资源调度和存储系统. 整体架构优化点: 1 根据 ...

  8. 工作中常见的hive语句总结

    hive的启动: 1.启动hadoop2.开启 metastore 在开启 hiveserver2服务nohup hive --service metastore >> log.out 2 ...

  9. PHP中的数据库一、MySQL优化策略综述

    前些天看到一篇文章说到PHP的瓶颈很多情况下不在PHP自身,而在于数据库.我们都知道,PHP开发中,数据的增删改查是核心.为了提升PHP的运行效率,程序员不光需要写出逻辑清晰,效率很高的代码,还要能对 ...

随机推荐

  1. X-factor Chain(信息学奥赛一本通 1628)

    题目描述 输入正整数 x,求 x 的大于 1 的因子组成的满足任意前一项都能整除后一项的序列的最大长度,以及满足最大长度的序列的个数. 输入 多组数据,每组数据一行,包含一个正整数 x. 对于全部数据 ...

  2. dubbo简单示例

    dubbo简单示例 2019-09-06 1 Zookeeper注册中心的搭建(windows单机) 下载zookeeper压缩包并解压到 D:\zookeeper\apache-zookeeper- ...

  3. C/C++的内存对齐

    1.内存对齐之pragma pack语法 语法:#pragma pack( [show] | [push | pop] [, identifier], n )作用:指定结构,联合和类的包对齐方式(pa ...

  4. zookeeper (二) paxos & fast paxos & FastLeaderElection

    参考文章: http://blog.csdn.net/xhh198781/article/details/10949697 paxos->fast paxos->FastLeaderEle ...

  5. 上传一句话木马时<? php被过滤的解决办法

    i春秋“百度杯”CTF比赛 九月场 web题 upload 题目描述:想怎么传就怎么传,就是这么任性.tips:flag在flag.php中 打开题目发现 于是想到通过上传一句话木马进入后台 上传一句 ...

  6. answer

    https://www.cnblogs.com/549294286/p/10451394.html 基于BIO实现的Server端,当建立了100个连接时,会有多少个线程?如果基于NIO,又会是多少个 ...

  7. How To Wake Up at 5 A.M. Every Day

    How To Wake Up at 5 A.M. Every Day For the past 3 months, I’ve successfully transitioned into being ...

  8. 使用python脚本批量设置nginx站点的rewrite规则

    一般情况下,配置rewrite重写规则使用shell脚本即可: 把url拼凑成1,2文件中中的格式,运行 chongxie.sh 即可生成我们需要的rewrite规则 [root@web01:/opt ...

  9. centos 查看版本 及 升级

     查看系统版本: cat /etc/redhat-release(/etc/centos-release)// 或者 rpm -q centos-release [root@56 ~]# cat /e ...

  10. VC 获取系统特殊文件夹的路径如:系统目录,桌面等

    转载:https://blog.csdn.net/qq_23992597/article/details/50963343 如果需要,请在StdAfx.h中添加 #include <shlobj ...