【tensorflow-v2.0】如何查看模型的输入输出流的属性
操作过程:
1. 查看mobilenet的variables
loaded = tf.saved_model.load('mobilenet')
print('MobileNet has {} trainable variables: {},...'.format(
len(loaded.trainable_variables),
', '.join([v.name for v in loaded.trainable_variables[:5]])))
trainable_variable_ids = {id(v) for v in loaded.trainable_variables}
non_trainable_variables = [v for v in loaded.variables if id(v) not in trainable_variable_ids]
print('MobileNet also has {} non-trainable variables: {}, ...'.format(
len(non_trainable_variables),
', '.join([v.name for v in non_trainable_variables[:3]])))
输出:输出trainable_variables的后5个variables,non_trainable_variables的后3个variables.
MobileNet has trainable variables: conv1/kernel:, conv1_bn/gamma:, conv1_bn/beta:, conv_dw_1/depthwise_kernel:, conv_dw_1_bn/gamma:,...
MobileNet also has non-trainable variables: conv1_bn/moving_mean:, conv1_bn/moving_variance:, conv_dw_1_bn/moving_mean:, ...
但是这种方法输出model/detector模型的variables却出错;
Traceback (most recent call last):
File "inspect_saved_model.py", line , in <module>
len(facebox_model.trainable_variables),
AttributeError: '_UserObject' object has no attribute 'trainable_variables'
原因还没找出来,有知道的可以私信博主哈~
2. 使用命令行查看模型的signatures
usage: saved_model_cli show [-h] --dir DIR [--all]
[--tag_set TAG_SET] [--signature_def SIGNATURE_DEF_KEY]
例如
saved_model_cli show --dir mobilenet/ --all
or
saved_model_cli show --dir model/detector/ --tag_set serve --signature_def serving_default
输出
(tf_test) ~/workspace/test_code/github_test/faceboxes-tensorflow$ saved_model_cli show --dir model/detector --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is: signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['images'] tensor_info:
dtype: DT_FLOAT
shape: (-, -, -, -)
name: serving_default_images:
The given SavedModel SignatureDef contains the following output(s):
outputs['boxes'] tensor_info:
dtype: DT_FLOAT
shape: (-, , )
name: StatefulPartitionedCall:
outputs['num_boxes'] tensor_info:
dtype: DT_INT32
shape: (-)
name: StatefulPartitionedCall:
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-, )
name: StatefulPartitionedCall:
Method name is: tensorflow/serving/predict
这个是model/detector模型的输出;
参考
1. tensorflow1.x;
2. tf_saved_model;
完
【tensorflow-v2.0】如何查看模型的输入输出流的属性的更多相关文章
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- TensorFlow v2.0实现Word2Vec算法
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...
- 使用TensorFlow v2.0构建多层感知器
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此 ...
- TensorFlow v2.0实现逻辑斯谛回归
使用TensorFlow v2.0实现逻辑斯谛回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 MNIST数据集概览 此示例使用MNIST手写数字.该数据集包含60,000个用于训练的样本和 ...
- TensorFlow v2.0的基本张量操作
使用TensorFlow v2.0的基本张量操作 from __future__ import print_function import tensorflow as tf # 定义张量常量 a = ...
- tensorflow 1.0 学习:模型的保存与恢复(Saver)
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...
- tensorflow 1.0 学习:模型的保存与恢复
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...
- TensorFlow 2.0高效开发指南
Effective TensorFlow 2.0 为使TensorFLow用户更高效,TensorFlow 2.0中进行了多出更改.TensorFlow 2.0删除了篇冗余API,使API更加一致(统 ...
- 在Anaconda3环境下安装并切换 Tensorflow 2.0 环境
背景 Anaconda切换各种环境非常方便,现在我们就来介绍一下如何使用anaconda安装tensorflow环境. anaconda v3.5 from 清华镜像站 tensorflow v2.0 ...
随机推荐
- js--同步运动json下
这一节针对上一节讲述的bug,我们来处理一下. 这个bug存在的原因就是,一旦只要有一个属性值达到目标值就会清除定时器,所以我们要改变 的就是清除定时器的那么部分.看下面的修改 var timer; ...
- 《快活帮》第九次团队作业:【Beta】Scrum meeting 2
项目 内容 这个作业属于哪个课程 2016计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十三 团队作业9:BETA冲刺与团队项目验收 团队名称 快活帮 作业学习目标 (1)掌 ...
- 《团队名称》第八次团队作业:Alpha冲刺day1
项目 内容 这个作业属于哪个课程 2016计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十二 团队作业8-软件测试与ALPHA冲刺 团队名称 快活帮 作业学习目标 (1)掌握 ...
- secureCRT无操作自动登出时间修改(亲测可用)
转自:http://blog.sina.com.cn/s/blog_6bcf42010102vlt9.html secureCRT连接机器经常会因为一段时间无操作就退出了,提示timed out wa ...
- set_multiset_functor
#include<iostream> #include<string> #include<set> using namespace std; class Stude ...
- 学习Java书籍推荐和面试网站推荐
一.Java书籍推荐: 来自http://www.importnew.com/26932.html 1. 鸟哥的Linux私房菜—基础学习篇 3. Effective Java 6. Java并发编程 ...
- TCP/IP通信过程(以发送电子邮件为例)(转)
1.应用程序处理 (1)A用户启动邮件应用程序,填写收件人邮箱和发送内容,点击“发送”,开始TCP/IP通信: (2)应用程序对发送的内容进行编码处理,这一过程相当于OSI的表示层功能: (3)由A用 ...
- Scrapy爬虫案例 | 数据存储至MySQL
首先,MySQL创建好数据库和表 然后编写各个模块 item.py import scrapy class JianliItem(scrapy.Item): name = scrapy.Field() ...
- ACM数据结构-树状数组
模板: int n; int tree[LEN]; int lowbit(int x){ return x&-x; } void update(int i,int d){//index,del ...
- AttributeError: module ‘select’ has no attribute 'epoll’
场景:mac 下导入的 ‘select’ 包 import select,然后在 主函数 中创建的 epoll 对象 epl = select.epoll(),运行报错如下 Traceback (mo ...