链接

vijos

思路

虽然询问1e7,但他询问很有意思,所以最多修改1e5个。

先把他们修改的点缩小到1e5之内并没有什么影响。

然后维护mul和add。不修改很好弄,修改的点可以弄点式子加加减减弄出来,逆元线性推也是可以的。

总的复杂度\(O(qlogq+tq+mod)\)

总结

我考场上连\(O(n^3)\)都写不对,回来不到一个小时就A了?浮躁!

其实已经写了三遍了、、码力急需加强

代码

#include <bits/stdc++.h>
#define debug(x) cerr << x << " "
using namespace std;
const int N = 1e5 + 7, mod = 1e7 + 19;
int read() {
int x = 0, f = 1; char s = getchar();
for (; s > '9' || s < '0'; s = getchar()) if(s == '-') f = -1;
for (; s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int n, q, t, a[107], b[107];
struct QUERY {
int opt, id, val;
} Q[N];
map<int, int> Hash;
int lsh_cnt, inv[N*100], stak[N], top;
struct node {
int val, add, mul;
node() {val = -1, add = 0,mul = 1;}
void clear() {val = -1, add = 0, mul = 1;}
} las[N];
int main() {
// freopen("data.in", "r", stdin);
n = read(), q = read();
for (int i = 1; i <= q; ++i) {
Q[i].opt = read();
if (Q[i].opt == 1) Q[i].id = read(), Q[i].val = read();
if (Q[i].opt == 2 || Q[i].opt == 3 || Q[i].opt == 4) Q[i].val = read();
if (Q[i].opt == 5) Q[i].id = read();
if (Q[i].id && !Hash.count(Q[i].id)) Hash[Q[i].id] = ++lsh_cnt;
while (Q[i].val < 0) Q[i].val += mod;
Q[i].val %= mod;
}
for (int i = 1; i <= q; ++i)
if (Q[i].opt == 1 || Q[i].opt == 5)
Q[i].id = Hash[Q[i].id];
inv[1] = 1;
for (int i = 2; i < mod; ++i)
inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
t = read();
for (int i = 1; i <= t; ++i) a[i] = read(), b[i] = read();
// cerr << "read is ok\n";
int ans = 0, tot = 0, add = 0, mul = 1, init = 0;
for (int i = 1; i <= t; ++i) {
for (int j = 1; j <= q; ++j) {
int x = (a[i] + 1LL * j * b[i]) % q + 1;
// cout<<x<<"\n";
// debug(Q[x].opt),debug(Q[x].id),debug(Q[x].val);cerr<<"\n";
if (Q[x].opt == 1) {
if (las[Q[x].id].val == -1) {
tot = ((tot - (1LL * init * mul % mod + add) % mod) %mod + mod) % mod;
stak[++top] = Q[x].id;
} else {
int now_mul = 1LL * mul * inv[las[Q[x].id].mul] % mod;
int now_add = ((add - 1LL * las[Q[x].id].add * now_mul % mod) % mod + mod) % mod;
tot = ((tot - (1LL * las[Q[x].id].val * now_mul % mod + now_add) % mod) % mod + mod) % mod;
}
tot = (tot + Q[x].val) % mod;
las[Q[x].id].val = Q[x].val;
las[Q[x].id].add = add;
las[Q[x].id].mul = mul;
}
if (Q[x].opt == 2) {
add = (add + Q[x].val) % mod;
tot = (tot + 1LL * Q[x].val * n % mod) % mod;
}
if (Q[x].opt == 3) {
add = 1LL * add * Q[x].val % mod;
mul = 1LL * mul * Q[x].val % mod;
tot = 1LL * tot * Q[x].val % mod;
}
if (Q[x].opt == 4) {
while (top) las[stak[top--]].clear();
init = Q[x].val, add = 0, mul = 1;
tot = 1LL * Q[x].val * n % mod;
}
if (Q[x].opt == 5) {
if (las[Q[x].id].val == -1) {
ans = ((ans + (1LL * init * mul % mod + add) % mod) %mod + mod) % mod;
} else {
int now_mul = 1LL * mul * inv[las[Q[x].id].mul] % mod;
int now_add = ((add - 1LL * las[Q[x].id].add * now_mul % mod) % mod + mod) % mod;
ans = ((ans + (1LL * las[Q[x].id].val * now_mul % mod + now_add) % mod) % mod + mod) % mod;
}
}
if (Q[x].opt == 6) ans = (ans + tot) % mod;
}
}
printf("%lld\n", ans);
return 0;
}
/*
5 5
6
6
3 4
1 3 8
5 5
1
8062 15996
*/

SDOI2019快速查询的更多相关文章

  1. [SDOI2019]快速查询——模拟

    题目链接: [SDOI2019]快速查询 对于整个序列维护一个标记$(k,b)$表示序列的每个数的真实值为$k*a_{i}+b$(注意要实时维护$k$的逆元),并记录序列的和. 对于单点修改,将$a_ ...

  2. [SDOI2019]快速查询

    [SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...

  3. luogu P5358 [SDOI2019]快速查询【模拟(?)】

    把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...

  4. vijos2051 SDOI2019 快速查询

    题目链接 吐槽 竟然让\(nlog\)的做法卡过去了.. 思路 因为\(1 \le q \le 10^5\),所以可以先对每个标准操作,所操作的位置进行重标号.这样所有的下标都是在\(10^5\)以内 ...

  5. 【题解】Luogu P5358 [SDOI2019]快速查询

    原题传送门 神鱼说这道题是强制离线(smog 我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\) 初始状态下\(mul=1,plus=0\) 操作1:在总和中 ...

  6. 【洛谷5358】[SDOI2019] 快速查询(模拟)

    点此看题面 大致题意: 有单点赋值.全局加法.全局乘法.全局赋值.单点求值.全局求和\(6\)种操作.现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\).让你处理\(t*q\)次操作,每次 ...

  7. P5358 [SDOI2019]快速查询

    思路:...乱搞数据结构?? 提交:1次 题解: 观察到除了单点就是全局操作,所以我们维护一个全局加法标记add和乘法标记mul和答案sum. 单点修改时,比如我们要把 \(pos\) 位置改成 \( ...

  8. 快速查询Python脚本语法

    /********************************************************************* * 快速查询Python脚本语法 * 说明: * Char ...

  9. 一种快速查询多点DS18B20温度的方法(转)

    源:http://hi.baidu.com/james_xiao/item/79b961c90623093e45941623 一种快速查询多点DS18B20温度的方法 引言      为了满足实时性要 ...

随机推荐

  1. SAP销售订单需求类型的确定优秀级

    需求类型的确定优秀级:1.策略组里的需求类型:2.MRP组里的:3.SO行项目类别+MRP类型4.SO行项目类别 部分截图:

  2. SpringBoot 入门篇(二) SpringBoot常用注解以及自动配置

    一.SpringBoot常用注解二.SpringBoot自动配置机制SpringBoot版本:1.5.13.RELEASE 对应官方文档链接:https://docs.spring.io/spring ...

  3. MySQL基础-2

    目录 配置文件的使用 表的分类--数据库引擎 简单的表的增删改查(CRUD) 创建表的完整写法 Mysql中的数据类型 数字类型 字符串类型 枚举和集合 时间和日期 配置文件的使用 大家发现每次进入m ...

  4. java实现SAP BO登录

    最近一个项目用到了SAP的businessObjects,需要进行二次开发,今天开发了登录接口,遇到了一些问题,进行了解决,现在分享一下. 1.依赖jar包的添加 bo登录需要用到一些jar包,具体在 ...

  5. 回调、Promise、async-await

    第一章 异步:现在与将来 程序中现在运行的部分和将来运行的部分之间的关系就是异步编程的核心. 场景:等待用户输入.从数据库或文件系统中请求数据.通过网络 发送数据并等待响应,或者是在以固定时间间隔执行 ...

  6. 数据库-如何创建SQL Server身份验证用户

    1.简介 默认安装SQL Server数据库后,SQL Server通过工具SQL Server Management Studio(SSMS)采用“Windows身份验证”方式登录,需要设置相应用户 ...

  7. 16、css实现div中图片占满整个屏幕

    <div class="img"></div> .img{ background: url("../assets/image/img.png&qu ...

  8. java list map在初始化的时候添加元素

    List<String> list = new ArrayList<String>(){{ add("First Object"); add("S ...

  9. 共享变量与python测试库

    共享变量(Variables) 1.变量表: 导入模式: 1.套件文件,不需要导入 2.资源文件 Resource  xxx.robot 2.变量文件 导入模式: 1.Variables xx.py ...

  10. springboot+https+http

    http访问不安全,使用https相对好些. 参考网址:https://blog.csdn.net/bock1984/article/details/90116965 操作如下: 1. 使用JDK自带 ...