orz啊又被屠了 人生如此艰难

题意:

给定一个k维的n^k的超立方体 超立方体的元素Ai1,i2,...,ik 的值为f(i1+i2+...+ik-k+1) f为斐波那契数列

求该超立方体的所有元素和

1<=n,k<=10^9

题解:

其实看到数据范围 就大概猜到是矩阵乘法了

但是我考试的时候想了半天还是不知道矩阵乘法怎么搞 - -

其实矩阵乘法比我想象中的厉害多了

这里有个性质 做完一维后 可以把这维压缩成一个点 用这维的和代替

并且压缩后下一维还是满足斐波那契的性质所以可以用同一个矩阵继续乘
那么把开始的[f[1],f[2],sum[1]] 改为[sum[n],sum[n]-f[1]+f[n+1],sum[n]] 继续快速幂即可

但是这样做的时间复杂度是O(klogn)的

其实上面的将[f[1],f[2],sum[1]] 改为[sum[n],sum[n]-f[1]+f[n+1],sum[n]]也是能用矩阵表示出来的orz

具体自己yy下 这样就能求出从这维转到下一维的矩阵是什么样的 这个矩阵的k次方就能求出答案

时间复杂度O(log(nk))

代码

 #include <cstdio>
#include <cstring>
typedef long long ll;
struct info{
ll n,m;
ll a[][];
}save,jz,one,st;
const ll mo=;
ll t,n,m;
inline info operator*(info a,info b){
info res;
res.n=a.n,res.m=b.m;
for (ll i=;i<res.n;i++)
for (ll j=;j<res.m;j++){
res.a[i][j]=;
for (ll k=;k<a.m;k++) res.a[i][j]=(res.a[i][j]+a.a[i][k]*b.a[k][j]%mo)%mo;
}
return res;
}
void makeinfo(){
memset(st.a,,sizeof(st.a));
memset(one.a,,sizeof(one.a));
memset(save.a,,sizeof(save.a));
st.n=,st.m=;
st.a[][]=,st.a[][]=,st.a[][]=;
one.n=one.m=save.n=save.m=;
one.a[][]=one.a[][]=one.a[][]=;
save.a[][]=save.a[][]=save.a[][]=save.a[][]=save.a[][]=;
}
info mi(info a,ll b){
info res=one;
for (;b;b>>=){
if (b&) res=res*a;
a=a*a;
}
return res;
}
int main(){
freopen("fibonacci.in","r",stdin);
freopen("fibonacci.out","w",stdout);
scanf("%I64d",&t);
makeinfo();
for (;t;t--){
scanf("%I64d%I64d",&n,&m);
jz=mi(save,n-);
jz.a[][]=jz.a[][]+jz.a[][]-;
jz.a[][]=jz.a[][]+jz.a[][];
jz.a[][]=jz.a[][]+jz.a[][];
jz.a[][]=jz.a[][];
jz.a[][]=jz.a[][];
jz.a[][]=jz.a[][];
jz=mi(jz,m);
jz=st*jz;
printf("%I64d\n",jz.a[][]);
}
fclose(stdin);
fclose(stdout);
}

【全国互虐】Fibonacci矩阵的更多相关文章

  1. hdu 1588(Fibonacci矩阵求和)

    题目的大意就是求等差数列对应的Fibonacci数值的和,容易知道Fibonacci对应的矩阵为[1,1,1,0],因为题目中f[0]=0,f[1]=1,所以推出最后结果f[n]=(A^n-1).a, ...

  2. BZOJ3286 Fibonacci矩阵 矩阵 快速幂 卡常

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3286 题意概括 n,m,a,b,c,d,e,f<=10^1000000 题解 神奇的卡常题目 ...

  3. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  4. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  5. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  6. HDU 3306 Another kind of Fibonacci(矩阵+ll超时必须用int&输入必须取模&M必须是int类型)

    Another kind of Fibonacci [题目链接]Another kind of Fibonacci [题目类型]矩阵+ll超时必须用int&输入必须取模&M必须是int ...

  7. POJ3070 Fibonacci[矩阵乘法]【学习笔记】

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  8. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU1588-Gauss Fibonacci(矩阵高速幂+等比数列二分求和)

    题目链接 题意:g(x) = k * x + b.f(x) 为Fibonacci数列.求f(g(x)),从x = 1到n的数字之和sum.并对m取模. 思路:  设A = |(1, 1),(1, 0) ...

随机推荐

  1. 第八篇 EBS实现企业日常业务运管模型的解决方案设计思路

    常业务运管模型企业有大有小,各行各业,千差万别,但,其日常业务运管也有相通之处,以典型的制造企业为例,其日常业务运管模型如下图所示:       (1)企业日常业务运管模型在市场经济条件下,一个生产型 ...

  2. shader复杂与深入:Normal Map(法线贴图)1

    转自:http://www.zwqxin.com/archives/shaderglsl/review-normal-map-bump-map.htmlNormal Map法线贴图,想必每个学习计算机 ...

  3. mac terminal 命令

    mac下显示隐藏文件 显示 defaults write com.apple.finder AppleShowAllFiles -bool true 隐藏 defaults write com.app ...

  4. Linux进程控制(二)

    1. 进程的创建 Linux下有四类创建子进程的函数:system(),fork(),exec*(),popen() 1.1. system函数 原型: #include <stdlib.h&g ...

  5. .gitignore规则不生效的解决办法

    .gitignore规则不生效的解决办法 使用git 的时候,在.gitignore中已经添加了某个文件或者文件夹,但是使用git status还能看见该文件的修改提示--–说明.gitignore未 ...

  6. 在maven项目中使用mybatis-generator-maven-plugin生成mybatis代码

    项目整体的目录结构如下: pom.xml如下: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=&q ...

  7. Zookeeper工作原理

    ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等.Zookeeper是hadoop的一个子项目,其 ...

  8. windows下github pages + hexo next 搭建个人博客

    一.github pages 搭建个人博客一般需要购买域名和空间,github pages为我们提供了这两样东西,而且是免费的,相关介绍和使用方法参考这里 github pages. 二.Hexo 一 ...

  9. 4.0之后的hibernate获取sessionFactory

    static{ Configuration config=new Configuration().configure(); ServiceRegistry resgistry = new Servic ...

  10. HDU 5265 pog loves szh II (技巧)

    题意:给一个数字序列,要求再其中找到两个数,其和再模p的结果是最大的,求此和. 思路:先将输入的元素模p,排序.结果可能有两种情况: (1)a+b大于p:肯定由两个最大的数之和来产生. (2)a+b小 ...