HDU-4632 Palindrome subsequence

题意:给定一个字符串,长度最长为1000,问该串有多少个回文子串。

分析:设dp[i][j]表示从 i 到 j 有多少个回文子串,则有动态规划方程:

str[i] != str[j]:dp[i][j] = dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1];
str[i]  = str[j]:dp[i][j] = dp[i+1][j] + dp[i][j-1] + 1.

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int mod = ;
const int N = ;
char str[N];
int f[N][N]; int solve(int len) {
memset(f, , sizeof (f));
for (int i = ; i < len; ++i) {
f[i][i] = ;
}
for (int k = ; k <= len; ++k) { // 枚举长度
for (int i = , j; i < len && (j=i+k-) < len; ++i) {
if (str[i] == str[j]) {
f[i][j] = (f[i][j-] + f[i+][j] + ) % mod;
} else {
f[i][j] = ((f[i][j-] + f[i+][j] - f[i+][j-]) % mod + mod) % mod;
}
}
}
return f[][len-];
} int main() {
int T, ca = ;
scanf("%d", &T);
while (T--) {
scanf("%s", str);
int len = strlen(str);
printf("Case %d: %d\n", ++ca, solve(len));
}
return ;
}

HDU-4638 Group

题意:给定一个序列(1-N的全排列),问任意一个区间内若将所有的数排序后,能够形成多少个不连续的子序列。

分析:对于每一个数字,记录其左边的数字和右边的数字所在的位置,然后根据相互关系维护好一个线段数量的树状数组。

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; void getint(int &); struct Node {
int No, l, r;
void read(int _No) {
getint(l), getint(r);
No = _No;
}
bool operator < (const Node &t) const {
return r > t.r;
}
};
const int N = ;
int seq[N], pos[N];
int n, m;
int bit[N];
int ans[N];
Node e[N]; inline int lowbit(int x) {
return x & -x;
} void add(int x, int val) {
for (int i = x; i <= n; i+=lowbit(i)) {
bit[i] += val;
}
} int sum(int x) {
int ret = ;
for (int i = x; i > ; i-=lowbit(i)) {
ret += bit[i];
}
return ret;
} void getint(int &t) {
char ch;
while ((ch = getchar()), ch < '' || ch > '') ;
t = ch - '';
while ((ch = getchar()), ch >= '' && ch <= '') t = t * + ch - '';
} int main() {
int T;
scanf("%d", &T);
while (T--) {
memset(bit, , sizeof (bit));
scanf("%d %d", &n, &m);
for (int i = ; i <= n; ++i) {
getint(seq[i]);
pos[seq[i]] = i;
}
for (int i = ; i <= m; ++i) {
e[i].read(i);
}
sort(e+, e++m);
for (int i = n; i >= ; --i) {
int cnt = ;
if (seq[i] > && pos[seq[i]-] > i) ++cnt;
if (seq[i] < n && pos[seq[i]+] > i) ++cnt;
if (cnt == ) add(i, );
else if (cnt == ) add(i, -);
}
int last = n;
for (int i = ; i <= m; ++i) {
for (int j = last; j > e[i].r; --j) {
if (seq[j] > && pos[seq[j]-] < j) add(pos[seq[j]-], );
if (seq[j] < n && pos[seq[j]+] < j) add(pos[seq[j]+], );
}
last = e[i].r;
ans[e[i].No] = sum(e[i].r)-sum(e[i].l-);
}
for (int i = ; i <= m; ++i) {
printf("%d\n", ans[i]);
}
}
return ;
}

HDU-4640 Island and study-sister

题意:给定N个点,N最大为17,问从最多3个人从1号点出发到指定的K个点所花的时间最短为多少?(所花时间以到达最后一个点为准)。要求三个人的路线中不能够存在相同的点。

分析:首先通过一次dfs搜索出单个人走出某种状态所需要的最小代价,f[i][j]表示 i 状态到 j 号节点停止的最小花费。这里有一个地方要注意就是记得某个点最后到达 j 点那么也可以由上一个状态最后到达 j 点转移过来,相当于走一个点又返回到原来的位置。紧接着再通过一个dp[i]表示走出 i 状态所需的最小花费,也举是从所有停止点中取出一个最小的,最后再对dp[i]进行一些修正,将其意义变为 i 状态中若存在目标点那么这些点一定要走,而其他的点则可以由该位为空的状态递推过来取一个较小值。这样做的目的是为了后面直接枚举3^n(即将每个点分配给三个人的某一个的组合情况)来得到最终结果,否则的话如果仅仅枚举K个点的情况,那么对于剩下的点又要进行一次讨论,时间复杂度上升了。

#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std; const int inf = 0x3f3f3f3f;
int n, m, K, esta;
int mp[][];
int f[<<][]; // f[i][j]表示到达状态i,停在j的最少花费
char vis[<<][];
int dp[<<];
int ret; int dfs(int sta, int e) {
if (vis[sta][e]) return f[sta][e];
vis[sta][e] = ;
for (int i = ; i < n; ++i) {
if (i == e) continue;
if ((sta & ( << i)) && mp[e][i] != inf) {
f[sta][e] = min(f[sta][e], *mp[e][i] + dfs(sta^(<<i), e));
}
}
int pre = sta ^ ( << e);
if (e != ) {
for (int i = ; i < n; ++i) { // 起始点将由于pre的不同而不同,当pre反应只可能有0号节点来时将枚举0
if ((pre & ( << i)) && mp[i][e] != inf) { // 说明两点之间有边相连
f[sta][e] = min(f[sta][e], mp[i][e] + dfs(pre, i));
}
}
}
return f[sta][e];
} void gao(int s1, int s2, int s3, int deep) {
if (deep == n) {
ret = min(ret, max(dp[s1], max(dp[s2], dp[s3])));
return;
}
gao(s1|(<<deep), s2, s3, deep+);
gao(s1, s2|(<<deep), s3, deep+);
gao(s1, s2, s3|(<<deep), deep+);
} int solve() {
// 处理出一次经过若干个节点的最短距离
memset(f, 0x3f, sizeof (f));
memset(vis, , sizeof (vis));
memset(dp, 0x3f, sizeof (dp));
ret = inf;
int LIM = << n;
f[][] = ; // 初始化从第1个节点出发
for (int i = ; i < LIM; ++i) {
for (int j = ; j < n; ++j) {
if (i & ( << j)) dfs(i, j);
}
}
// 之后处理利用三次机会的组合情况
for (int i = ; i < LIM; ++i) {
for (int j = ; j < n; ++j) {
dp[i] = min(dp[i], f[i][j]);
}
}
for (int i = ; i < LIM; ++i) {
for (int j = ; j < n; ++j) {
if (i & ( << j) && !(esta & (<<j))) {
dp[i] = min(dp[i], dp[i^(<<j)]);
}
}
}
gao(, , , );
return ret == inf ? - : ret;
} int main() {
int T, ca = ;
scanf("%d", &T);
while (T--) {
memset(mp, 0x3f, sizeof (mp));
esta = ; // 路线中一定包含源点
scanf("%d %d", &n, &m);
int a, b, c;
for (int i = ; i < m; ++i) {
scanf("%d %d %d", &a, &b, &c);
--a, --b;
mp[a][b] = mp[b][a] = min(mp[a][b], c);
}
scanf("%d", &K);
for (int i = ; i < K; ++i) {
scanf("%d", &c);
esta = esta | ( << c-);
}
printf("Case %d: %d\n", ++ca, solve());
}
return ;
}

2013 Multi-University Training Contest 4的更多相关文章

  1. Integer Partition(hdu4658)2013 Multi-University Training Contest 6 整数拆分二

    Integer Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...

  2. Partition(hdu4651)2013 Multi-University Training Contest 5

    Partition Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  3. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  4. Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

    Partition Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  5. JSU 2013 Summer Individual Ranking Contest - 5

    JSU 2013 Summer Individual Ranking Contest - 5 密码:本套题选题权归JSU所有,需要密码请联系(http://blog.csdn.net/yew1eb). ...

  6. HDU4888 Redraw Beautiful Drawings(2014 Multi-University Training Contest 3)

    Redraw Beautiful Drawings Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. HDU 2018 Multi-University Training Contest 3 Problem A. Ascending Rating 【单调队列优化】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6319 Problem A. Ascending Rating Time Limit: 10000/500 ...

  8. 2015 Multi-University Training Contest 8 hdu 5390 tree

    tree Time Limit: 8000ms Memory Limit: 262144KB This problem will be judged on HDU. Original ID: 5390 ...

  9. hdu 4946 2014 Multi-University Training Contest 8

    Area of Mushroom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  10. 2016 Multi-University Training Contest 2 D. Differencia

    Differencia Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

随机推荐

  1. 和菜鸟一起学linux总线驱动之初识spi驱动数据传输流程【转】

    转自:http://blog.csdn.net/eastmoon502136/article/details/7921846 对于SPI的一些结构体都有所了解之后呢,那么再去瞧瞧SPI的那些长见的操作 ...

  2. SQL Server 复制 订阅与发布

    SQL Server 复制 订阅与发布 通过SQL Server 2008数据库复制实现数据库同步备份 SqlServer2008 数据库同步的两种方式(Sql JOB) SqlServer2008 ...

  3. ServiceStack.Redis之IRedisClient 03_转

    事实上,IRedisClient里面的很多方法,其实就是Redis的命令名.只要对Redis的命令熟悉一点就能够非常快速地理解和掌握这些方法,趁着现在对Redis不是特别了解,我也对着命令来了解一下这 ...

  4. iOS Button按钮 热区的放大

      Apple的iOS人机交互设计指南中指出,按钮点击热区应不小于44x44pt,否则这个按钮就会让用户觉得“很难用”,因为明明点击上去了,却没有任何响应. 但我们有时做自定义Button的时候,设计 ...

  5. Meisell-Lehmer算法(统计较大数据里的素数)

    http://acm.hdu.edu.cn/showproblem.php?pid=5901 1e11的数据量,这道题用这个算法花了202ms. #include<bits/stdc++.h&g ...

  6. (原创)cocos2dx使用jsoncpp的正确姿势

    环境: vs2010, cocos2dx@2.1.4, win32, jsoncpp-src-0.5.0.tar.gz jsoncpp下载地址: http://sourceforge.net/proj ...

  7. thinkphp隐藏中url的index.php

    在本地进行测试 1.修改apache配置文件将如下代码#去掉 #LoadModule rewrite_module modules/mod_rewrite.so   在index.php 目录下新建文 ...

  8. JavaScript获取元素尺寸和大小操作总结

    一.获取元素的行内样式 复制代码 代码如下: var obj = document.getElementById("test"); alert(obj.height + " ...

  9. 样式其他与JS脚本语言

    样式其他:display(显示block和隐藏none,不占位置)  visibility(显示visible和隐藏hidden,占位置)  overflow(超出范围 hidden隐藏) 透明(op ...

  10. VC++ 线程同步 总结

    注:所谓同步,并不是多个线程一起同时执行,而是他们协同步调,按预定的先后次序执行. 与线程相关的基本函数包括:CreateThread:创建线程CloseHandle:关闭线程句柄.注意,这只会使指定 ...