SPARK 数据统计程序性能优化。
昨天写完R脚本 没测试就发到博客里, 结果实际运行发现很慢,运行时间在2小时以上, 查看spark控制台, 大量时间消耗在count上, 产生的stage多大70多个 。
分析原因。 1 select *可以优化, 2 join操作可以放倒hive sql里的尽量放到hive sql里
这两个优化, 最终目的都是为了减少I/O操作。 hive数据到spark cache的数据量可以减少。 而且可能hive对join操作也有特别的优化。
这两个优化带来的坏处也是显而易见的, 代码可读性下降, 调试长sql语句的难度比调试spark 集合运算的api难度要大。
优化完, 实际全部运行时间, 只有8分钟。代码如下
#领券日期参数, 修改统计日参数
date_parameter <- "2016-07-11"
dayCount_parameter = 1
hiveContext <- sparkRHive.init(sc)
sql(hiveContext, "use honeycomb_bh_db")
#通过hiveSql 获得想要的并集集合并且缓存下来 sql date_add
##程序执行阶段1: 数据准备。。。。。
acquired_users_sql <-"select distinct presentee_mobile from sc_t_acquire_record where sc_t_acquire_record.year=2016 and sc_t_acquire_record.month=07 and to_date(ct_time)='STARTDATE'"
all_order_sql <- "select passenger_phone,create_time from sc_t_order_all_info As a where a.year=2016 and a.month=07 and to_date(a.create_time)>='STARTDATE' and to_date(a.create_time)<=date_add(date('STARTDATE'),14) and product_id=210"
rebate_order_sql <- "select passenger_phone,create_time from sc_t_order_rebate_info As a where a.year=2016 and a.month=07 and to_date(a.create_time)>='STARTDATE' and to_date(a.create_time)<=date_add(date('STARTDATE'),7) and product_id=210"
acquired_users_sql<-sub(pattern='STARTDATE', replacement=date_parameter, acquired_users_sql)
all_order_sql<-gsub(pattern='STARTDATE', replacement=date_parameter, all_order_sql)
rebate_order_sql<-gsub(pattern='STARTDATE', replacement=date_parameter, rebate_order_sql)
#当天领券绑定的用户集合
acquired_users <-sql(hiveContext,acquired_users_sql)
cache(acquired_users)
#15日内的全订单集合
all_orders <-sql(hiveContext,all_order_sql)
#7日内返利的订单集合
rebated_orders <- sql(hiveContext,rebate_order_sql)
#第0日领券后到14日结束前, 有打车纪录的, 尽量用hivesql 减少IO
#acquired_users_with_orders<-join(acquired_users,all_orders, acquired_users$presentee_mobile==all_orders$passenger_phone, "left_outer")
#acquired_users_with_orders <- filter(acquired_users_with_orders, "passenger_phone is not null")
acquired_users_with_orders_sql = paste("select * from (", acquired_users_sql,") As acquire left outer join (",all_order_sql, ") As orders on acquire.presentee_mobile = orders.passenger_phone where orders.passenger_phone is not null and acquire.presentee_mobile is not null",sep="")
acquired_users_with_orders <-sql(hiveContext,acquired_users_with_orders_sql)
cache(acquired_users_with_orders)
mobiles_acquired_users_with_order <-distinct(select(acquired_users_with_orders, "presentee_mobile"))
#write.json(acquired_users_with_orders, "file:///home/rd/spark/bin/20160711_users_convertion.json")
#第0日领券后~第7日结束前,被返利的领券用户
#orders_rebated_within_8days <- join(acquired_users,rebated_orders, acquired_users$presentee_mobile==rebated_orders$passenger_phone, "left_outer")
#orders_rebated_within_8days <- filter(orders_rebated_within_8days, "passenger_phone is not null")
orders_rebated_sql <- paste("select * from (", acquired_users_sql,") As acquire left outer join (",rebate_order_sql, ") As orders on acquire.presentee_mobile = orders.passenger_phone where orders.passenger_phone is not null and acquire.presentee_mobile is not null",sep="")
orders_rebated_within_8days<-sql(hiveContext,orders_rebated_sql)
cache(orders_rebated_within_8days)
results <- data.frame("name" = c("frist"), "value" = c(0),stringsAsFactors=FALSE)
##程序执行阶段2: 开始利用spark进行集合运算。。。。。
#第0日到第7日结束前, 券有效期内打过车的领券用户订单数据
rules<- "to_date(create_time)>='STARTDATE' and to_date(create_time)<=date_add(date('STARTDATE'),7)"
rules<-gsub(pattern='STARTDATE', replacement=date_parameter, rules)
orders_within_8days = filter(acquired_users_with_orders, rules)
mobiles_with_orders_within_8days <- distinct(select(orders_within_8days, "presentee_mobile"))
#第8日到第14日结束前, 券过期后, 打过车的领券用户订单数据
rules<- "to_date(create_time)>=date_add(date('STARTDATE'),8) and to_date(create_time)<=date_add(date('STARTDATE'),15)"
rules<-gsub(pattern='STARTDATE', replacement=date_parameter, rules)
orders_after_8days = filter(acquired_users_with_orders, rules)
mobiles_with_orders_after_8days <- distinct(select(orders_after_8days, "presentee_mobile"))
#第0日到第7日结束前, 被返利信息纪录的领券用户
mobiles_user_reabted <-distinct(select(orders_rebated_within_8days, "presentee_mobile"))
#券0~7天有效期内首单后未被返利的用户
mobiles_my_team_losted <- except(mobiles_with_orders_within_8days, mobiles_user_reabted)
#第8日券有效期过后, 14日内, 有成交纪录被sic统计方法, 统计进来的用户
mobiles_after_7days_countedBySicheng <-except(mobiles_with_orders_after_8days, mobiles_user_reabted)
#券0~7天有效期内首单后未被返利的用户, 第8日到第14日成单, 被sic统计转化的用户
mobiles_my_team_losted_countedBySicheng <-intersect(mobiles_my_team_losted, mobiles_with_orders_after_8days)
#第8日券有效期过后, 14日内, sic没有统计的首单用户
mobiles_both_losted <- except(mobiles_my_team_losted, mobiles_after_7days_countedBySicheng)
#券0~7天有效期内首单后未被返利, 后7天没打车的用户
mobile_first_order_withno_coupon_no_futher_order_after_7days <- except(mobiles_my_team_losted, mobiles_with_orders_after_8days)
#7日内没打车, 后7日打车的用户
mobiles_with_order_invoked_coupon <- except(mobiles_with_orders_after_8days, mobiles_with_orders_within_8days)
#领券后15天里打车的用户, 由于业务特性,可以重复领券 这个存在重复统计。
mobiles_converted = acquired_users_with_orders
#程序运行阶段: 输出结果。。。
results<-rbind(results, c("领新手券的用户数量", nrow(acquired_users))
results<-rbind(results, c("领新手券后15日转化的用户数量", nrow(mobiles_acquired_users_with_order)))
results<-rbind(results, c("领新手券7日内打车用券转化的用户数量", nrow(mobiles_user_reabted)))
results<-rbind(results, c("新手券有效期过期后7日内打车转化用户", nrow(mobiles_after_7days_countedBySicheng)))
results<-rbind(results, c("sic统计方法统计的转化用户数", nrow(mobiles_user_reabted)+nrow(mobiles_after_7days_countedBySicheng)))
results<-rbind(results, c("7日内首单未用新手券的人数", nrow(mobiles_my_team_losted)))
results<-rbind(results, c("7日内首单未用新手券, 后7日内没打车的人数", nrow(mobiles_both_losted)))
results<-rbind(results, c("7日内首单未用新手券, 后7日内有打车的人数", nrow(mobiles_my_team_losted_countedBySicheng)))
results<-rbind(results, c("领新手券后7日内未打车, 后7日又打车的人数", nrow(mobiles_with_order_invoked_coupon)))
results
SPARK 数据统计程序性能优化。的更多相关文章
- iOS程序性能优化
iOS程序性能优化 一.初级 使用ARC进行内存管理 在iOS5发布的ARC,它解决了最常见的内存泄露问题.但是值得注意的是,ARC并不能避免所有的内存泄露.使用ARC之后,工程中可能还会有内存泄露, ...
- [python]用profile协助程序性能优化
转自:http://blog.csdn.net/gzlaiyonghao/article/details/1483728 本文最初发表于恋花蝶的博客http://blog.csdn.net/lanph ...
- iOS 程序性能优化
前言 转载自:http://www.samirchen.com/ios-performance-optimization/ 程序性能优化不应该是一件放在功能完成之后的事,对性能的概念应该从我们一开始写 ...
- C++ 应用程序性能优化
C++ 应用程序性能优化 eryar@163.com 1. Introduction 对于几何造型内核OpenCASCADE,由于会涉及到大量的数值算法,如矩阵相关计算,微积分,Newton迭代法解方 ...
- Java程序性能优化技巧
Java程序性能优化技巧 多线程.集合.网络编程.内存优化.缓冲..spring.设计模式.软件工程.编程思想 1.生成对象时,合理分配空间和大小new ArrayList(100); 2.优化for ...
- [JAVA] java程序性能优化
一.避免在循环条件中使用复杂表达式 在不做编译优化的情况下,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快. 例子: import java.util ...
- 微信小程序性能优化技巧
摘要: 如果小程序不够快,还要它干嘛? 原文:微信小程序性能优化方案--让你的小程序如此丝滑 作者:杜俊成要好好学习 Fundebug经授权转载,版权归原作者所有. 微信小程序如果想要优化性能,有关键 ...
- [转]C#程序性能优化
C#程序性能优化 1.显式注册的EvenHandler要显式注销以避免内存泄漏 将一个成员方法注册到某个对象的事件会造成后者持有前者的引用.在事件注销之前,前者不会被垃圾回收. private v ...
- [深入浅出Cocoa]iOS程序性能优化
本文转载至 http://blog.csdn.net/kesalin/article/details/8762032 [深入浅出Cocoa]iOS程序性能优化 罗朝辉 (http://blog.csd ...
随机推荐
- oracle分布式事务总结-转载
基本概念 Local Coordinator:在分布事务中,必须参考其它节点上的数据才能完成自己这部分操作的站点. Global Coordinator:分布事务的发起者,负责协调这个分布事务. Co ...
- github入门
一.先了解 相比CVS\SVN优势: - 支持离线开发,离线Repository- 强大的分支功能,适合多个独立开发者协作- 速度快 github 本地有仓库,储存着所有repository的历史: ...
- JS入门-慕课网
javascript是一种弱类型的数据交互语言, ch 1 数据类型 js中有六种数据类型:nunmber.string.boolean.null.undenfined.object原始类型:numb ...
- python分析log
最近做的一个项目,系统log下会生成如下的log(部分): [-- ::] Processing File transfer configured from ship to shore.... [-- ...
- Swift一些语法
1.函数权限 public : 最大权限, 可以在当前framework和其他framework中访问internal : 默认的权限, 可以在当前framework中随意访问private : 私有 ...
- 查询数据库中表或视图或存储过程的数量 sql 语句
如果一个数据库中表的数量较多的话,那么在统计数据库中表的数量或视图或存储过程的数量时,如果还有一个一个去数,那就太麻烦了,其实可以通过 sql 语句来查询的,sql 语句的查询方法如下: sql se ...
- 《App研发录》知识点汇总
原文链接:http://www.jianshu.com/p/fc8c4638937e <App研发录>这部书是包建强写的,说来也巧,在读这边书之前在看池建强的<Mac 人生元编程&g ...
- CSS现代字体栈
CSS字体栈是一系列的字体,它包含了能在不同操作系统和平台上战士的字体,以尽可能的使排版保持一致性.浏览器会在font-family规定的所有字体中从前往后一次查找,如果找不到当前字体就查找下一个字体 ...
- CodeSmith 7.01破解下载
运行CodesmithKeyGenerator.exe,1.修改Prefix输入框的值为:CS70P-2.在主页面点Generate,生成注册码,填入激活码到code smith的Serial框中,( ...
- JPA 批量新增
1. 在实现类 增加 EntityManager 注入 private EntityManager em; @PersistenceContext(name = "EntityManager ...