数据结构学习笔记05图(最小生成树 Prim Kruskal)
最小生成树Minimum Spanning Tree
一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。
树: 无回路
|V|个顶点,一定有|V|-1条边
生成树: 包含全部顶点
|V|-1 条边都在图里
边权重和最小
最小生成树存在<--->图联通
向生成树中任加一条边都一定构成回路
贪心算法
“贪”:每一步都要最好的
“好”:权重最小的边
需要约束:
①只能用图里有的边
②只能正好用掉|V|-1条边
③不能有回路
Prim算法— 让一棵小树长大
步骤 | |
1 | 任意选取v1为顶点开始,并将v1收录进MST |
2 | v1有三条边,选取最短边(v1,v4)为1,并将v4收录进MST |
3 | MST={v1,v4}的边中在选取最小的(v1,v2)为2,将v2收录进MST |
4 | MST={v1,v4,v2},选(v4,v3)为2,将v3收录进MST |
5 | 不能选(v4,v2)3,会构成回路。所以接着选(v4,v7)4,将v7收录进MST |
6 | 选(v7,v6)为1,将v6收录进MST |
7 | (v7,v5)6,将v7收录进MST |
T = O(|V|^2) ---稠密图合算
/* 邻接矩阵存储 - Prim最小生成树算法 */ Vertex FindMinDist( MGraph Graph, WeightType dist[] )
{ /* 返回未被收录顶点中dist最小者 */
Vertex MinV, V;
WeightType MinDist = INFINITY; for (V=; V<Graph->Nv; V++) {
if ( dist[V]!= && dist[V]<MinDist) {
/* 若V未被收录,且dist[V]更小 */
MinDist = dist[V]; /* 更新最小距离 */
MinV = V; /* 更新对应顶点 */
}
}
if (MinDist < INFINITY) /* 若找到最小dist */
return MinV; /* 返回对应的顶点下标 */
else return ERROR; /* 若这样的顶点不存在,返回-1作为标记 */
} /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
int Prim( MGraph Graph, LGraph MST )
{
WeightType dist[MaxVertexNum], TotalWeight;
Vertex parent[MaxVertexNum], V, W;
int VCount;
Edge E; /* 初始化。默认初始点下标是0 */
for (V=; V<Graph->Nv; V++) {
/* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */
dist[V] = Graph->G[][V];
parent[V] = ; /* 暂且定义所有顶点的父结点都是初始点0 */
}
TotalWeight = ; /* 初始化权重和 */
VCount = ; /* 初始化收录的顶点数 */
/* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
MST = CreateGraph(Graph->Nv);
E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */ /* 将初始点0收录进MST */
dist[] = ;
VCount ++;
parent[] = -; /* 当前树根是0 */ while () {
V = FindMinDist( Graph, dist );
/* V = 未被收录顶点中dist最小者 */
if ( V==ERROR ) /* 若这样的V不存在 */
break; /* 算法结束 */ /* 将V及相应的边<parent[V], V>收录进MST */
E->V1 = parent[V];
E->V2 = V;
E->Weight = dist[V];
InsertEdge( MST, E );
TotalWeight += dist[V];
dist[V] = ;
VCount++; for( W=; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
if ( dist[W]!= && Graph->G[V][W]<INFINITY ) {
/* 若W是V的邻接点并且未被收录 */
if ( Graph->G[V][W] < dist[W] ) {
/* 若收录V使得dist[W]变小 */
dist[W] = Graph->G[V][W]; /* 更新dist[W] */
parent[W] = V; /* 更新树 */
}
}
} /* while结束*/
if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */
TotalWeight = ERROR;
return TotalWeight; /* 算法执行完毕,返回最小权重和或错误标记 */
}
Kruskal算法— 将森林合并成树
步骤 | |
1 | 选取一条最小边(v1,v4)为1 |
2 | 选取一条最小边(v6,v7)为1 |
3 | 选取一条最小边(v1,v2)为2 |
4 | 选取一条最小边(v3,v4)为2 |
5 | 不能选取最小边(v2,v4)3会构成回路 |
6 | 选取一条最小边(v7,v4)为4 |
7 | 选取一条最小边(v5,v7)为6 |
T= O(|E|log|E|)
/* 邻接表存储 - Kruskal最小生成树算法 */ /*-------------------- 顶点并查集定义 --------------------*/
typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */
typedef Vertex SetName; /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */ void InitializeVSet( SetType S, int N )
{ /* 初始化并查集 */
ElementType X; for ( X=; X<N; X++ ) S[X] = -;
} void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
/* 保证小集合并入大集合 */
if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
S[Root2] += S[Root1]; /* 集合1并入集合2 */
S[Root1] = Root2;
}
else { /* 如果集合1比较大 */
S[Root1] += S[Root2]; /* 集合2并入集合1 */
S[Root2] = Root1;
}
} SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
if ( S[X] < ) /* 找到集合的根 */
return X;
else
return S[X] = Find( S, S[X] ); /* 路径压缩 */
} bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 )
{ /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */
Vertex Root1, Root2; Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */
Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */ if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */
return false;
else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */
Union( VSet, Root1, Root2 );
return true;
}
}
/*-------------------- 并查集定义结束 --------------------*/ /*-------------------- 边的最小堆定义 --------------------*/
void PercDown( Edge ESet, int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p ) */
/* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */
int Parent, Child;
struct ENode X; X = ESet[p]; /* 取出根结点存放的值 */
for( Parent=p; (Parent*+)<N; Parent=Child ) {
Child = Parent * + ;
if( (Child!=N-) && (ESet[Child].Weight>ESet[Child+].Weight) )
Child++; /* Child指向左右子结点的较小者 */
if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */
else /* 下滤X */
ESet[Parent] = ESet[Child];
}
ESet[Parent] = X;
} void InitializeESet( LGraph Graph, Edge ESet )
{ /* 将图的边存入数组ESet,并且初始化为最小堆 */
Vertex V;
PtrToAdjVNode W;
int ECount; /* 将图的边存入数组ESet */
ECount = ;
for ( V=; V<Graph->Nv; V++ )
for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */
ESet[ECount].V1 = V;
ESet[ECount].V2 = W->AdjV;
ESet[ECount++].Weight = W->Weight;
}
/* 初始化为最小堆 */
for ( ECount=Graph->Ne/; ECount>=; ECount-- )
PercDown( ESet, ECount, Graph->Ne );
} int GetEdge( Edge ESet, int CurrentSize )
{ /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */ /* 将最小边与当前堆的最后一个位置的边交换 */
Swap( &ESet[], &ESet[CurrentSize-]);
/* 将剩下的边继续调整成最小堆 */
PercDown( ESet, , CurrentSize- ); return CurrentSize-; /* 返回最小边所在位置 */
}
/*-------------------- 最小堆定义结束 --------------------*/ int Kruskal( LGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
WeightType TotalWeight;
int ECount, NextEdge;
SetType VSet; /* 顶点数组 */
Edge ESet; /* 边数组 */ InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */
ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne );
InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */
/* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
MST = CreateGraph(Graph->Nv);
TotalWeight = ; /* 初始化权重和 */
ECount = ; /* 初始化收录的边数 */ NextEdge = Graph->Ne; /* 原始边集的规模 */
while ( ECount < Graph->Nv- ) { /* 当收集的边不足以构成树时 */
NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */
if (NextEdge < ) /* 边集已空 */
break;
/* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */
if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) {
/* 将该边插入MST */
InsertEdge( MST, ESet+NextEdge );
TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */
ECount++; /* 生成树中边数加1 */
}
}
if ( ECount < Graph->Nv- )
TotalWeight = -; /* 设置错误标记,表示生成树不存在 */ return TotalWeight;
}
数据结构学习笔记05图(最小生成树 Prim Kruskal)的更多相关文章
- 数据结构学习笔记05图 (邻接矩阵 邻接表-->BFS DFS、最短路径)
数据结构之图 图(Graph) 包含 一组顶点:通常用V (Vertex) 表示顶点集合 一组边:通常用E (Edge) 表示边的集合 边是顶点对:(v, w) ∈E ,其中v, w ∈ V 有向边& ...
- 最小生成树 Prim Kruskal
layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...
- 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...
- Windows phone 8 学习笔记(5) 图块与通知
原文:Windows phone 8 学习笔记(5) 图块与通知 基于metro风格的Windows phone 8 应用提到了图块的概念,它就是指启动菜单中的快速启动图标.一般一个应用必须有一个默认 ...
- iOS学习笔记20-地图(二)MapKit框架
一.地图开发介绍 从iOS6.0开始地图数据不再由谷歌驱动,而是改用自家地图,当然在国内它的数据是由高德地图提供的. 在iOS中进行地图开发主要有三种方式: 利用MapKit框架进行地图开发,利用这种 ...
- C++ GUI Qt4学习笔记05
C++ GUI Qt4学习笔记05 qtc++正则表达式 QIntValidator -- 只让用户输入整数 QDoubleValidator -- 只让用户输入浮 ...
- ES6中Map数据结构学习笔记
很多东西就是要细细的品读然后做点读书笔记,心理才会踏实- Javascript对象本质上就是键值对的集合(Hash结构),但是键只能是字符串,这有一定的限制. 1234 var d = {}var e ...
- 【数据结构与算法Python版学习笔记】图——最短路径问题、最小生成树
最短路径问题 概念 可以通过"traceroute"命令来跟踪信息传送的路径: traceroute www.lib.pku.edu.cn 可以将互联网路由器体系表示为一个带权边的 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
随机推荐
- ORACLE快速彻底Kill掉的会话(转载)
转载:http://www.cnblogs.com/kerrycode/p/4034231.html 在ORACLE数据库当中,有时候会使用ALTER SYSTEM KILL SESSION 'sid ...
- ibatis配置多表关联(一对一、一对多、多对多)
iBatis的多表关联. ibatis的表关联,和数据库语句无关,是在程序中,把若干语句的结果关联到一起.这种关联形式,虽然在大数据量时是很奢侈的行为,但是看起来很干净,用起来也很方便. 这里用表lo ...
- 解决Cannot find or open the PDB file问题
今天使用opencv里的mat想要保存数据里边的像素的平均值和标准差: 但是编程好了之后会出现下面的问题,不能找到pdb file .下面将提供三种解决方法以及产生问题的原因. 程序也运行不出来,整个 ...
- 8051学习笔记——IIC与EEPROM实验
main.c #include <reg51.h> #include "iic.h" #define AT24C02 0xa0 //AT24C02 地址 sbit LS ...
- Android之Handler(异步消息处理)机制
1. 概述 Handler . Looper .Message 这三者都与Android异步消息处理线程相关的概念.那么什么叫异步消息处理线程呢?异步消息处理线程启动后会进入一个无限的循环体之中,每循 ...
- python中set和frozenset方法和区别
set(可变集合)与frozenset(不可变集合)的区别:set无序排序且不重复,是可变的,有add(),remove()等方法.既然是可变的,所以它不存在哈希值.基本功能包括关系测试和消除重复元素 ...
- prototype原型模式中的问题
对于每个构造函数来说,都有一个prototype属性.对于每个对象实例来说,都有_proto_属性. 参看下面代码: function Person(){} Person.prototype={ na ...
- Mac 平台下功能强大的Shimo软件使用指南
年初自从换了MAC工作站后,彻底享受了Apple产品给我们带来的完美体验,可能是刚转过来不适应,在访问网络设备时觉得远程连接不方便,例如ssh,vpn登陆都不是很方便,后来又安装了openvpnfor ...
- navicat 连接oracle
Navicat远程连接oracle数据库数据库需要设置一下oci.dll. 下面介绍如何进行设置. 工具/原料 Navicat Pre instantclient-basiclite-nt-12. ...
- [转]常用电器认证标志 && 手机频段
一个手电筒就可以算得上一件家用电器的时代已经过去了,现在,谁家里不得有个几件?大家肯定看到了这些电器上贴的各种各样的认证标志了吧?看的人是眼花缭乱,目不暇接,更有一些是“洋认证”.下面罗列出一些常见的 ...