最小生成树Minimum Spanning Tree

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。

  树: 无回路

     |V|个顶点,一定有|V|-1条边

  生成树: 包含全部顶点

  |V|-1 条边都在图里

  边权重和最小

最小生成树存在<--->图联通

向生成树中任加一条边都一定构成回路

贪心算法

  “贪”:每一步都要最好的

  “好”:权重最小的边

  需要约束:

    ①只能用图里有的边

    ②只能正好用掉|V|-1条边

    ③不能有回路

Prim算法— 让一棵小树长大

步骤  
1 任意选取v1为顶点开始,并将v1收录进MST
2 v1有三条边,选取最短边(v1,v4)为1,并将v4收录进MST
3 MST={v1,v4}的边中在选取最小的(v1,v2)为2,将v2收录进MST
4 MST={v1,v4,v2},选(v4,v3)为2,将v3收录进MST
5 不能选(v4,v2)3,会构成回路。所以接着选(v4,v7)4,将v7收录进MST
6 选(v7,v6)为1,将v6收录进MST
7 (v7,v5)6,将v7收录进MST

T = O(|V|^2) ---稠密图合算

 /* 邻接矩阵存储 - Prim最小生成树算法 */

 Vertex FindMinDist( MGraph Graph, WeightType dist[] )
{ /* 返回未被收录顶点中dist最小者 */
Vertex MinV, V;
WeightType MinDist = INFINITY; for (V=; V<Graph->Nv; V++) {
if ( dist[V]!= && dist[V]<MinDist) {
/* 若V未被收录,且dist[V]更小 */
MinDist = dist[V]; /* 更新最小距离 */
MinV = V; /* 更新对应顶点 */
}
}
if (MinDist < INFINITY) /* 若找到最小dist */
return MinV; /* 返回对应的顶点下标 */
else return ERROR; /* 若这样的顶点不存在,返回-1作为标记 */
} /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
int Prim( MGraph Graph, LGraph MST )
{
WeightType dist[MaxVertexNum], TotalWeight;
Vertex parent[MaxVertexNum], V, W;
int VCount;
Edge E; /* 初始化。默认初始点下标是0 */
for (V=; V<Graph->Nv; V++) {
/* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */
dist[V] = Graph->G[][V];
parent[V] = ; /* 暂且定义所有顶点的父结点都是初始点0 */
}
TotalWeight = ; /* 初始化权重和 */
VCount = ; /* 初始化收录的顶点数 */
/* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
MST = CreateGraph(Graph->Nv);
E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */ /* 将初始点0收录进MST */
dist[] = ;
VCount ++;
parent[] = -; /* 当前树根是0 */ while () {
V = FindMinDist( Graph, dist );
/* V = 未被收录顶点中dist最小者 */
if ( V==ERROR ) /* 若这样的V不存在 */
break; /* 算法结束 */ /* 将V及相应的边<parent[V], V>收录进MST */
E->V1 = parent[V];
E->V2 = V;
E->Weight = dist[V];
InsertEdge( MST, E );
TotalWeight += dist[V];
dist[V] = ;
VCount++; for( W=; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
if ( dist[W]!= && Graph->G[V][W]<INFINITY ) {
/* 若W是V的邻接点并且未被收录 */
if ( Graph->G[V][W] < dist[W] ) {
/* 若收录V使得dist[W]变小 */
dist[W] = Graph->G[V][W]; /* 更新dist[W] */
parent[W] = V; /* 更新树 */
}
}
} /* while结束*/
if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */
TotalWeight = ERROR;
return TotalWeight; /* 算法执行完毕,返回最小权重和或错误标记 */
}

Kruskal算法— 将森林合并成树

步骤  
1 选取一条最小边(v1,v4)为1
2 选取一条最小边(v6,v7)为1
3 选取一条最小边(v1,v2)为2
4 选取一条最小边(v3,v4)为2
5 不能选取最小边(v2,v4)3会构成回路
6 选取一条最小边(v7,v4)为4
7 选取一条最小边(v5,v7)为6

T= O(|E|log|E|)

 /* 邻接表存储 - Kruskal最小生成树算法 */

 /*-------------------- 顶点并查集定义 --------------------*/
typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */
typedef Vertex SetName; /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */ void InitializeVSet( SetType S, int N )
{ /* 初始化并查集 */
ElementType X; for ( X=; X<N; X++ ) S[X] = -;
} void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
/* 保证小集合并入大集合 */
if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
S[Root2] += S[Root1]; /* 集合1并入集合2 */
S[Root1] = Root2;
}
else { /* 如果集合1比较大 */
S[Root1] += S[Root2]; /* 集合2并入集合1 */
S[Root2] = Root1;
}
} SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
if ( S[X] < ) /* 找到集合的根 */
return X;
else
return S[X] = Find( S, S[X] ); /* 路径压缩 */
} bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 )
{ /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */
Vertex Root1, Root2; Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */
Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */ if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */
return false;
else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */
Union( VSet, Root1, Root2 );
return true;
}
}
/*-------------------- 并查集定义结束 --------------------*/ /*-------------------- 边的最小堆定义 --------------------*/
void PercDown( Edge ESet, int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p ) */
/* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */
int Parent, Child;
struct ENode X; X = ESet[p]; /* 取出根结点存放的值 */
for( Parent=p; (Parent*+)<N; Parent=Child ) {
Child = Parent * + ;
if( (Child!=N-) && (ESet[Child].Weight>ESet[Child+].Weight) )
Child++; /* Child指向左右子结点的较小者 */
if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */
else /* 下滤X */
ESet[Parent] = ESet[Child];
}
ESet[Parent] = X;
} void InitializeESet( LGraph Graph, Edge ESet )
{ /* 将图的边存入数组ESet,并且初始化为最小堆 */
Vertex V;
PtrToAdjVNode W;
int ECount; /* 将图的边存入数组ESet */
ECount = ;
for ( V=; V<Graph->Nv; V++ )
for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */
ESet[ECount].V1 = V;
ESet[ECount].V2 = W->AdjV;
ESet[ECount++].Weight = W->Weight;
}
/* 初始化为最小堆 */
for ( ECount=Graph->Ne/; ECount>=; ECount-- )
PercDown( ESet, ECount, Graph->Ne );
} int GetEdge( Edge ESet, int CurrentSize )
{ /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */ /* 将最小边与当前堆的最后一个位置的边交换 */
Swap( &ESet[], &ESet[CurrentSize-]);
/* 将剩下的边继续调整成最小堆 */
PercDown( ESet, , CurrentSize- ); return CurrentSize-; /* 返回最小边所在位置 */
}
/*-------------------- 最小堆定义结束 --------------------*/ int Kruskal( LGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
WeightType TotalWeight;
int ECount, NextEdge;
SetType VSet; /* 顶点数组 */
Edge ESet; /* 边数组 */ InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */
ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne );
InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */
/* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
MST = CreateGraph(Graph->Nv);
TotalWeight = ; /* 初始化权重和 */
ECount = ; /* 初始化收录的边数 */ NextEdge = Graph->Ne; /* 原始边集的规模 */
while ( ECount < Graph->Nv- ) { /* 当收集的边不足以构成树时 */
NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */
if (NextEdge < ) /* 边集已空 */
break;
/* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */
if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) {
/* 将该边插入MST */
InsertEdge( MST, ESet+NextEdge );
TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */
ECount++; /* 生成树中边数加1 */
}
}
if ( ECount < Graph->Nv- )
TotalWeight = -; /* 设置错误标记,表示生成树不存在 */ return TotalWeight;
}

数据结构学习笔记05图(最小生成树 Prim Kruskal)的更多相关文章

  1. 数据结构学习笔记05图 (邻接矩阵 邻接表-->BFS DFS、最短路径)

    数据结构之图 图(Graph) 包含 一组顶点:通常用V (Vertex) 表示顶点集合 一组边:通常用E (Edge) 表示边的集合 边是顶点对:(v, w) ∈E ,其中v, w ∈ V 有向边& ...

  2. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  3. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  4. Windows phone 8 学习笔记(5) 图块与通知

    原文:Windows phone 8 学习笔记(5) 图块与通知 基于metro风格的Windows phone 8 应用提到了图块的概念,它就是指启动菜单中的快速启动图标.一般一个应用必须有一个默认 ...

  5. iOS学习笔记20-地图(二)MapKit框架

    一.地图开发介绍 从iOS6.0开始地图数据不再由谷歌驱动,而是改用自家地图,当然在国内它的数据是由高德地图提供的. 在iOS中进行地图开发主要有三种方式: 利用MapKit框架进行地图开发,利用这种 ...

  6. C++ GUI Qt4学习笔记05

    C++ GUI Qt4学习笔记05   qtc++正则表达式 QIntValidator           --  只让用户输入整数 QDoubleValidator     --  只让用户输入浮 ...

  7. ES6中Map数据结构学习笔记

    很多东西就是要细细的品读然后做点读书笔记,心理才会踏实- Javascript对象本质上就是键值对的集合(Hash结构),但是键只能是字符串,这有一定的限制. 1234 var d = {}var e ...

  8. 【数据结构与算法Python版学习笔记】图——最短路径问题、最小生成树

    最短路径问题 概念 可以通过"traceroute"命令来跟踪信息传送的路径: traceroute www.lib.pku.edu.cn 可以将互联网路由器体系表示为一个带权边的 ...

  9. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

随机推荐

  1. Loadrunner 添加windows资源没反应

    使用 LoadRunner Controller 添加Windows资源系统没有反应, 解决办法 : 1.关闭Windows 防火墙 2.若使用的不是本机 1) 首先要启动所监测机器的remote r ...

  2. 菜鸟-手把手教你把Acegi应用到实际项目中(6)

    在企业应用中,用户的用户名.密码和角色等信息一般存放在RDBMS(关系数据库)中.前面几节我们采用的是InMemoryDaoImpl,即基于内存的存放方式.这节我们将采用RDBMS存储用户信息. Us ...

  3. 菜鸟-手把手教你把Acegi应用到实际项目中(2)

    上一篇是基于BasicProcessingFilter的基本认证,这篇我们改用AuthenticationProcessingFilter基于表单的认证方式. 1.authenticationProc ...

  4. OC基础(3)

    对象的存储细节 函数与方法对比 常见错误 *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bot ...

  5. SQL server 2016 安装步骤

    1.进入安装中心:可以参考硬件和软件要求.可以看到一些说明文档 2.选择全新安装模式继续安装 3.输入产品秘钥:这里使用演示秘钥进行 4.在协议中,点击同意,并点击下一步按钮,继续安装 5.进入全局规 ...

  6. 业务gis 怎么让别的开发人员不需要懂gis就可以搞开发? (五)

    我们稍微搭建了一个比较简单的图形使用模板,flex端操作这里我就不说了,按大家喜好写,最后javascript部分可以通过jsduck工具生成一个开发文档给业务开发人员,前提注释部分要写好,要公开的注 ...

  7. java多态例子

    多态存在的三个必要条件一.要有继承:二.要有重写:三.父类引用指向子类对象. 代码部分: class A { public String show(D obj) { return ("A a ...

  8. 学习练习 java面向对象封装汽车

    package com.hanqi; //汽车 public class Car { // 车牌 private String CheP; // 油箱容量 private double YouXRL ...

  9. 洛谷P1457 城堡 The Castle

    P1457 城堡 The Castle 137通过 279提交 题目提供者该用户不存在 标签USACO 难度提高+/省选- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 我们憨厚的USACO ...

  10. Java 对字符反转操作。

    //把一段字符串反转后大小写互换位置 public class test_demo { public static void main(String[] args)throws Exception { ...