URAL 1586 Threeprime Numbers(DP)
题意 : 定义Threeprime为它的任意连续3位上的数字,都构成一个3位的质数。 求对于一个n位数,存在多少个Threeprime数。
思路 : 记录[100, 999]范围内所有素数(标记的是该素数的每一位x1,x2,x3)。然后从n = 4往后,定义dp[i][x2][x3], i 表示到第 i 位时,第 i-1 位为 x2 , 第 i 位x3,此时所包含的情况数。
dp[i][x2][x3] = dp[i][x2][x3] + dp[i-1][x1][x2];最后求和sum(dp[n][x2][x3]);
//
#include <cstdio>
#include <cstring>
#include <iostream>
#define MOD 1000000009
#define LL long long
using namespace std ; int dp[][][],prime[][][] ;
int vis[] = {} ,cnt = ; void solve()
{
cnt = ;
memset(vis,,sizeof(vis)) ;
for(int i = ; i <= ; i++)
{
if(!vis[i])
{
for(int j = i*i ; j <= ; j += i)
vis[j] = ;
}
}
for(int i = ; i <= ; i ++)
{
if(!vis[i])
{
int x1 = i / ;
int x2 = i / % ;
int x3 = i % ;
prime[x1][x2][x3] = ;
dp[][x2][x3] += ;
cnt ++ ;
}
}
}
int main()
{
int n ;
scanf("%d",&n);
solve() ;
if(n == ) {
printf("%d\n",cnt % MOD) ;
return ;
}
for(int i = ; i <= n ; i++)
for(int x1 = ; x1 <= ; x1 ++)
for(int x2 = ; x2 <= ; x2 ++)
for(int x3 = ; x3 <= ; x3 ++)
if(dp[i-][x1][x2] && prime[x1][x2][x3])
dp[i][x2][x3] = (dp[i][x2][x3] + dp[i-][x1][x2]) % MOD;
int ans = ;
for(int x2 = ; x2 <= ; x2 ++)
{
for(int x3 = ; x3 <= ; x3 ++)
{
ans = (ans+dp[n][x2][x3])%MOD ;
}
}
printf("%d\n",ans) ;
return ;
}
URAL 1586 Threeprime Numbers(DP)的更多相关文章
- 递推DP URAL 1586 Threeprime Numbers
题目传送门 /* 题意:n位数字,任意连续的三位数字组成的数字是素数,这样的n位数有多少个 最优子结构:考虑3位数的数字,可以枚举出来,第4位是和第3位,第2位组成的数字判断是否是素数 所以,dp[i ...
- URAL 1009 K-based numbers(DP递推)
点我看题目 题意 : K进制的N位数,不能有前导零,这N位数不能有连续的两个0在里边,问满足上述条件的数有多少个. 思路 : ch[i]代表着K进制的 i 位数,不含两个连续的0的个数. 当第 i 位 ...
- Gym 100703G---Game of numbers(DP)
题目链接 http://vjudge.net/contest/132391#problem/G Description standard input/outputStatements — It' s ...
- URAL 1146 Maximum Sum(DP)
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the large ...
- POJ1338Ugly Numbers(DP)
http://poj.org/problem?id=1338 第一反应就是DP,DP[i] = min{2*DP[j], 3*DP[k], 5*DP[p] j,k,p<i};于是枚举一下0-i- ...
- Ural 1073 Square Country (DP)
题目地址:Ural 1073 DP水题.也能够说是背包. #include <iostream> #include <cstdio> #include <string&g ...
- Codeforces 403D: Beautiful Pairs of Numbers(DP)
题意:转换模型之后,就是1~n个数中选k个,放到一个容量为n的背包中,这个背包还特别神奇,相同的物品摆放的位置不同时,算不同的放法(想象背包空间就是一个长度为n的数组,然后容量为1的物体放一个格子,容 ...
- Ural 2018The Debut Album(DP)
题目地址:Ural 2018 简单DP.用滚动数组. 代码例如以下: #include <iostream> #include <cstdio> #include <st ...
- URAL 2031. Overturned Numbers (枚举)
2031. Overturned Numbers Time limit: 1.0 second Memory limit: 64 MB Little Pierre was surfing the In ...
随机推荐
- String.split()方法你可能不知道的一面
一.问题 java中String的split()是我们经常使用的方法,用来按照特定字符分割字符串,那么我们看以下一段代码: public void splitTest() { String str = ...
- 两个有用的shell工具总结
shell工具之一:sed sed基础 sed编辑器被称作流编辑器,与常见的交互式文本编辑器刚好相反.文本编辑器可以通过键盘来交互式地插入.删除.替换文本中的数据:而流编辑器是基于一组预先的规则来编辑 ...
- Entity Framework 学习第一天 续
改写第一天的增删改查方法,观察增删改查的本质 using System; using System.Collections.Generic; using System.Data.Entity.Infr ...
- P1230: [Usaco2008 Nov]lites 开关灯
嗯嗯,这是一道线段树的题,询问区间内亮着的灯的个数,我们可以把区间修改的线段树改一下,原本的求和改成若有奇数次更改则取反(总长度-亮着的灯个数),而判断是否奇数次只要数组加一个delta的值,upda ...
- Objective-C面向对象(三)
1.类的继承 OC的继承是单继承,每个子类只有一个直接父类 1.1 继承的特点 OC继承的语法 @interface SubClass :SuperClass { //成员变量定义 } //方法定义部 ...
- JQuery 对 Select option 的操作---转载
<select id="selectID" > <option value="1">1</option> <optio ...
- c 计算 语句 执行 时间
当然,你也可以用clock函数来计算你的机器运行一个循环或者处理其它事件到底花了多少时间: #include “stdio.h” #include “stdlib.h” #include “tim ...
- liferay7中如何Hiding the default Success Message
下面介绍如何把在Liferay 7中如何把action执行成功之后的信息不显示,因为宝宝有需要,就去查了相关源码和资料. 如果想要某个portlet不显示执行成功的信息,在doProcessActio ...
- Leetcode#115 Distinct Subsequences
原题地址 转化为求非重路径数问题,用动态规划求解,这种方法还挺常见的 举个例子,S="aabb",T="ab".构造如下地图("."表示空位 ...
- Fiddler 过滤 css,图片等请求url 正则表达式
设置步骤: 1.勾选 Request Headers 中的 Hide if url contains 过滤项 2.贴入下方正则表达式 REGEX:(?insx)/[^?/]*.(css|ico|jpg ...