Curse of Dimensionality

Curse of Dimensionality refers to non-intuitive properties of data observed when working in high-dimensional space *, specifically related to usability and interpretation of distances and volumes. This is one of my favourite topics in Machine Learning and Statistics since it has broad applications (not specific to any machine learning method), it is very counter-intuitive and hence awe inspiring, it has profound application for any of analytics techniques, and it has ‘cool’ scary name like some Egyptian curse!
For quick grasp, consider this example: Say, you dropped a coin on a 100 meter line. How do you find it? Simple, just walk on the line and search. But what if it’s 100 x 100 sq. m. field? It’s already getting tough, trying to search a (roughly) football ground for a single coin. But what if it’s 100 x 100 x 100 cu.m space?! You know, football ground now has thirty-story height. Good luck finding a coin there! That, in essence is “curse of dimensionality”.

Many ML methods use Distance Measure

Most segmentation and clustering methods rely on computing distances between observations. Well known k-Means segmentation assigns points to nearest center. DBSCAN and Hierarchical clustering also required distance metrics. Distribution and density based outlier detectionalgorithms also make use of distance relative to other distances to mark outliers.

Supervised classification solutions like k-Nearest Neighbours method also use distance between observations to assign class to unknown observation. Support Vector Machine method involves transforming observations around select Kernels based on distance between observation and the kernel.

Common form of recommendation systems involve distance based similarity among user and item attribute vectors. Even when other forms of distances are used, number of dimensions plays a role in analytic design.

One of the most common distance metrics is Euclidian Distance metric, which is simply linear distance between two points in multi-dimensional hyper-space. Euclidian Distance for point i and point j in n dimensional space can be computed as:

Distance plays havoc in high-dimension

Consider simple process of data sampling. Suppose the black outside box in Fig. 1 is data universe with uniform distribution of data points across whole volume, and that we want to sample 1% of observations as enclosed by red inside box. Black box is hyper-cube in multi-dimensional space with each side representing range of value in that dimension. For simple 3-dimensional example in Fig. 1, we may have following range:

Figure 1 : Sampling

What is proportion of each range should we sample to obtain that 1% sample? For 2-dimensions, 10% of range will achieve overall 1% sampling, so we may select x∈(0,10) and y∈(0,50) and expect to capture 1% of all observations. This is because 10%2=1%. Do you expect this proportion to be higher or lower for 3-dimension?

Even though our search is now in additional direction, proportional actually increases to 21.5%. And not only increases, for just one additional dimension, it doubles! And you can see that we have to cover almost one-fifth of each dimension just to get one-hundredth of overall! In 10-dimensions, this proportion is 63% and in 100-dimensions – which is not uncommon number of dimensions in any real-life machine learning – one has to sample 95% of range along each dimension to sample 1% of observations! This mind-bending result happens because in high dimensions spread of data points becomes larger even if they are uniformly spread.

This has consequence in terms of design of experiment and sampling. Process becomes very computationally expensive, even to the extent that sampling asymptotically approaches population despite sample size remaining much smaller than population.

Consider another huge consequence of high dimensionality. Many algorithms measure distance between two data points to define some sort of near-ness (DBSCAN, Kernels, k-Nearest Neighbour) in reference to some pre-defined distance threshold. In 2-dimensions, we can imagine that two points are near if one falls within certain radius of another. Consider left image in Fig. 2. What’s share of uniformly spaced points within black square fall inside the red circle? That is about

Figure 2 : Near-ness

So if you fit biggest circle possible inside the square, you cover 78% of square. Yet, biggest sphere possible inside the cube covers only

of the volume. This volume reduces exponentially to 0.24% for just 10-dimension! What it essentially means that in high-dimensional world every single data point is at corners and nothing really is center of volume, or in other words, center volume reduces to nothing because there is (almost) no center! This has huge consequences of distance based clustering algorithms. All the distances start looking like same and any distance more or less than other is more random fluctuation in data rather than any measure of dissimilarity!

Fig. 3 shows randomly generated 2-D data and corresponding all-to-all distances. Coefficient of Variation in distance, computed as Standard Deviation divided by Mean, is 45.9%. Corresponding number of similarly generated 5-D data is 26.5% and for 10-D is 19.1%. Admittedly this is one sample, but trend supports the conclusion that in high-dimensions every distance is about same, and none is near or far!

Figure 3 : Distance Clustering

High-dimension affects other things too

Apart from distances and volumes, number of dimensions creates other practical problems. Solution run-time and system-memory requirements often non-linearly escalate with increase in number of dimensions. Due to exponential increase in feasible solutions, many optimization methods cannot reach global optima and have to make do with local optima. Further, instead of closed-form solution, optimization must use search based algorithms like gradient descent, genetic algorithm and simulated annealing. More dimensions introduce possibility of correlation and parameter estimation can become difficult in regression approaches.

Dealing with High-dimension

This will be separate blog post in itself, but correlation analysis, clustering, information value, variance inflation factor, principal component analysis are some of the ways in which number of dimensions can be reduced.

* Number of variables, observations or features a data point is made up of is called dimension of data. For instance, any point in space can be represented using 3 co-ordinates of length, breadth, and height, and has 3 dimensions

Curse of Dimensionality的更多相关文章

  1. [转]The Curse of Dimensionality(维数灾难)

    原文章地址:维度灾难 - 柳枫的文章 - 知乎 https://zhuanlan.zhihu.com/p/27488363 对于大多数数据,在一维空间或者说是低维空间都是很难完全分割的,但是在高纬空间 ...

  2. [Stats385] Lecture 05: Avoid the curse of dimensionality

    Lecturer 咖中咖 Tomaso A. Poggio Lecture slice Lecture video 三个基本问题: Approximation Theory: When and why ...

  3. 【PRML读书笔记-Chapter1-Introduction】1.4 The Curse of Dimensionality

    维数灾难 给定如下分类问题: 其中x6和x7表示横轴和竖轴(即两个measurements),怎么分? 方法一(simple): 把整个图分成:16个格,当给定一个新的点的时候,就数他所在的格子中,哪 ...

  4. 对The Curse of Dimensionality(维度灾难)的理解

    一个特性:低维(特征少)转向高维的过程中,样本会变的稀疏(可以有两种理解方式:1.样本数目不变,样本彼此之间距离增大.2.样本密度不变,所需的样本数目指数倍增长). 高维度带来的影响: 1.变得可分. ...

  5. Dimensionality and high dimensional data: definition, examples, curse of..

    Dimensionality in statistics refers to how many attributes a dataset has. For example, healthcare da ...

  6. 第八章——降维(Dimensionality Reduction)

    机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了 ...

  7. 壁虎书8 Dimensionality Reduction

    many Machine Learning problems involve thousands or even millions of features for each training inst ...

  8. NLP点滴——文本相似度

    [TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...

  9. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

随机推荐

  1. php如何实现页面回退的两种方法

    发布:thatboy   来源:网络  [大 中 小] 你有没有遇到过这样的情况:表单出错而返回页面时,之前填写的信息全不见了.本文为大家介绍二种支持php页面回退的方法,供大家参考. 本文原始链接: ...

  2. 用delphiXE7 dbExpress Framework提供的功能获取数据表信息

    uses +  Data.DBXMetaDataNames procedure TMainForm.Button2Click(Sender: TObject);var  Cmd: TDBXComman ...

  3. 11.python中的元组

    在学习什么是元组之前,我们先来看看如何创建一个元组对象: a = ('abc',123) b = tuple(('def',456)) print a print b

  4. 6.html5分组元素

    何为分组元素,首先先看下面这个例子: <span>scolia<span>scolia</span></span> <span>scolia ...

  5. C 简易基础开发框架 - simple c

    引言   一个为 简单高效而生的 简易跨平台的 纯C开发框架.   githup上源码   https://github.com/wangzhione/sconsole_project 请容我细说 s ...

  6. 使用IC框架开发跨平台App的备忘录123

    1,关于图标与启动屏幕 icon.png 192x192splash.png 2208x2208 将这两个图片放在resources目录下,在终端执行:ionic resources --iocn - ...

  7. 嵌入式web服务

    :boa.thttpd.mini_httpd.shttpd.lighttpd.goaheand.appweb和apache等. Boa 1.介绍 Boa诞生于1991年,作者Paul Philips. ...

  8. iOS学习之C语言指针

     访问数据的两种方式: 1.直接访问: 2.间接访问:先找到内存地址,根据地址访问存储单元.(内存地址 被称为指针) 定义指针变量: 类型修饰符 *指针变量名 = NULL; NULL表示空指针,相当 ...

  9. AngularJs学习笔记-AngularJS权威教程学习笔记

    AngularJS是什么? AngularJS是一种构建动态Web应用的结构化框架.主要用于构建单页面Web应用, 增加抽象级别,使构建交互式的现代Web应用变得更加简单. AngularJS使开发W ...

  10. Rstdio中更换R版本

    1.打开Rstdio,选择Tool --> Global Options.