A Different Task 

The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefly the problem is to transfer all the disks from peg-A to peg-C using peg-B as intermediate one in such a way that at no stage a larger disk is above a smaller disk. Normally, we want the minimum number of moves required for this task. The problem is used as an ideal example for learning recursion. It is so well studied that one can find the sequence of moves for smaller number of disks such as 3 or 4. A trivial computer program can find the case of large number of disks also.

Here we have made your task little bit difficult by making the problem more flexible. Here the disks can be in any peg initially.

If more than one disk is in a certain peg, then they will be in a valid arrangement (larger disk will not be on smaller ones). We will give you two such arrangements of disks. You will have to find out the minimum number of moves, which will transform the first arrangement into the second one. Of course you always have to maintain the constraint that smaller disks must be upon the larger ones.

Input

The input file contains at most 100 test cases. Each test case starts with a positive integer N ( 1N60), which means the number of disks. You will be given the arrangements in next two lines. Each arrangement will be represented by N integers, which are 12 or 3. If the i-th ( 1iN) integer is 1, you should consider that i-th disk is on Peg-A. Input is terminated by N = 0. This case should not be processed.

Output

Output of each test case should consist of a line starting with `Case #: ' where # is the test case number. It should be followed by the minimum number of moves as specified in the problem statement.

Sample Input

3
1 1 1
2 2 2
3
1 2 3
3 2 1
4
1 1 1 1
1 1 1 1
0

Sample Output

Case 1: 7
Case 2: 3
Case 3: 0

代码:

 #include<cstdio>
const int maxn =;
int n,start[maxn],finish[maxn];
long long Func(int *p,int i,int final)
{
if(i==) return ;
if(p[i]==final) return Func(p,i-,final);
return Func(p,i-,-p[i]-final)+(1LL<<(i-));
}
int main()
{
int kase=;
while(scanf("%d",&n)==&&n)
{
for(int i=;i<=n;i++)
scanf("%d",&start[i]);
for(int i=;i<=n;i++)
scanf("%d",&finish[i]);
int k=n;
while(k>= && start[k]==finish[k])k--; long long ans=;
if(k>=)
{
int other=-start[k]-finish[k];
ans =Func(start,k-,other)+Func(finish,k-,other)+;
}
printf("Case %d: %lld\n",++kase,ans);
}
}

Problem setter: Md. Kamruzzaman
Special Thanks: Derek Kisman (Alternate Solution), Shahriar Manzoor (Picture Drawing)

Miguel Revilla 2004-12-10

uva----(10794) A Different Task的更多相关文章

  1. 二分图最大匹配(匈牙利算法) UVA 670 The dog task

    题目传送门 /* 题意:bob按照指定顺序行走,他的狗可以在他到达下一个点之前到一个景点并及时返回,问狗最多能走多少个景点 匈牙利算法:按照狗能否顺利到一个景点分为两个集合,套个模板 */ #incl ...

  2. UVA 10795 A Different Task(汉诺塔 递归))

    A Different Task The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefl ...

  3. UVA 10795 - A Different Task(递归)

     A Different Task  The (Three peg) Tower of Hanoi problem is a popular one in computer science. Brie ...

  4. UVa 10795 - A Different Task 对称, 中间状态, 数位DP 难度: 3

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  5. UVa 10795 - A Different Task

    题目大意:给出n,表示说有n个大小不同的盘子,然后再给出每个盘子的初始位置和目标位置,要求计算出最少的步数使得每个盘子都移动到它的目标位置. 分析:  首先找最大不在目标柱子上的盘子K,因为如果最大的 ...

  6. 【汉诺塔问题】UVa 10795 - A Different Task

    [经典汉诺塔问题] 汉诺(Hanoi)塔问题:古代有一个梵塔,塔内有三个座A.B.C,A座上有64个盘子,盘子大小不等,大的在下,小的在上.有一个和尚想把这64个盘子从A座移到B座,但每次只能允许移动 ...

  7. UVA 10795 A Different Task(模拟)

    题目链接:https://vjudge.net/problem/UVA-10795 一道比较有思维含量的一道题: 注意一种分治的思想和“除了柱子x和柱子y之外的那个柱子”编号的问题. 首先在初始局面和 ...

  8. uva 11728 - Alternate Task(数论)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/36409469 option=com_onli ...

  9. UVA 11728 - Alternate Task (数论)

    Uva 11728 - Alternate Task 题目链接 题意:给定一个因子和.求出相应是哪个数字 思路:数字不可能大于因子和,对于每一个数字去算出因子和,然后记录下来就可以 代码: #incl ...

  10. uva 11728 Alternate Task

    vjudge 上题目链接:uva 11728 其实是个数论水题,直接打表就行: #include<cstdio> #include<algorithm> using names ...

随机推荐

  1. oracle, create table, insufficient privileges

    SQL> exec pro_gz_day_report;          ORA-01031: insufficient privileges          ORA-06512: at & ...

  2. 5.5.3使用terminfo功能标志

    当使用terminfo时,需要做的第一件事就是调用函数setupterm来设置终端类型.这将为当前的终端类型初始化一个TERMINAL结构.然后,你就可以查看当前终端的功能标志并使用他们的功能了. # ...

  3. C# 操作的时候接收用户输入密码进行确认

    首先新建一个原始窗体,如下:

  4. Linux基础01 学会使用命令帮助

    Linux基础01 学会使用命令帮助 概述 在linux终端,面对命令不知道怎么用,或不记得命令的拼写及参数时,我们需要求助于系统的帮助文档:linux系统内置的帮助文档很详细,通常能解决我们的问题, ...

  5. [ZJOI2006]物流运输

    1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5999  Solved: 2473[Submit][Stat ...

  6. 常用的jquery

    获取一组radio被选中项的值 var item = $('input[@name=items][@checked]').val(); 获取select被选中项的文本 var item = $(&qu ...

  7. iOS - OC RunTime 运行时

    1.运行时的使用 向分类中添加属性 // 包含运行时头文件 #import <objc/runtime.h> /* void objc_setAssociatedObject(id obj ...

  8. SAP供应商和客户的创建

    进来遇到一个创建供应商的需求,由于在系统中关于供应商和客户的创建比较特殊,且没有相关函数进行创建, 找到一个类和方法来创建,类名:VMD_EI_API  方法名:MAINTAIN_DIRECT_INP ...

  9. [转载] 每周推荐阅读 BFQ:实现IO的隔离共享与高吞吐访问

    磁盘IO和网络IO隔离与共享是混部应用中基本需求,从早些年的BVC到现在的Matrix,以及Galaxy,或者未来的BS/Mint混部都遇到类似的问题:由于无法有效实现IO级的隔离(包括吞吐隔离.延时 ...

  10. 学习笔记day5:inline inline-block block区别

    1. block元素可以包含block元素和inline元素:但inline元素只能包含inline元素.要注意的是这个是个大概的说法,每个特定的元素能包含的元素也是特定的,所以具体到个别元素上,这条 ...