Knights of the Round Table
Knights of the Round Table
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country.
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.
Input
The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).
The input is terminated by a block with n = m = 0 .
Output
For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.
0
Sample Input
5 5
1 4
1 5
2 5
3 4
4 5
0 0
Sample Output
2
Hint
Huge input file, 'scanf' recommended to avoid TLE.
solution
不相互憎恨的骑士连边
问题变成求不在任何一个简单奇圈上的点的个数(奇圈可以开会)
如果 某个点双连通分量中存在奇环,则该点双联通分量中所有点都在某个奇环内
傻了。。。
1 2
1 3
2 3
是点双。。。。。
染色判环即可
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define maxn 1002
#define M 2000006
using namespace std;
int n,m,t1,t2,head[maxn],fl[maxn][maxn],tot;
int dfn[maxn],low[maxn],zh[M],top,sc,cnt,he[maxn],tt;
int flag[maxn],co[maxn],fsy[maxn];
struct node{
int nex,u,v;
}e[M],h[M];
void lj(int t1,int t2){
e[++tot].v=t2;e[tot].u=t1;e[tot].nex=head[t1];head[t1]=tot;
}
void add(int t1,int t2){
h[++tt].v=t2,h[tt].nex=he[t1];he[t1]=tt;
}
void lian(int u,int v){
cnt++;
while(top>0){
t1=e[zh[top]].u,t2=e[zh[top]].v;
add(cnt,t1);add(cnt,t2);
if(t1==u&&t2==v){top--;break;}
top--;
}
}
void tarjan(int k,int fa){
dfn[k]=low[k]=++sc;
// cout<<k<<' '<<dfn[k]<<endl;
for(int i=head[k];i;i=e[i].nex){
//cout<<"fsy "<<e[i].v<<endl;
if(e[i].v==fa)continue;
if(!dfn[e[i].v]){
zh[++top]=i;
tarjan(e[i].v,k);
low[k]=min(low[k],low[e[i].v]);
if(low[e[i].v]>=dfn[k])lian(k,e[i].v);//geding
}
else{
if(low[k]>dfn[e[i].v]){
low[k]=dfn[e[i].v];
zh[++top]=i;
}
}
}
// cout<<"aa "<<k<<' '<<low[k]<<endl;
}
bool pd(int k){
for(int i=head[k];i;i=e[i].nex){
if(!flag[e[i].v])continue;
if(!co[e[i].v]){
co[e[i].v]=3-co[k];
if(!pd(e[i].v))return 0;
}
else if(co[e[i].v]!=3-co[k])return 0;
}
return 1;
}
void Q()
{
sc=tot=tt=0;
for(int i=1;i<=1000;i++)
head[i]=he[i]=dfn[i]=low[i]=fsy[i]=0;
memset(fl,0,sizeof fl);
memset(e,0,sizeof e);memset(h,0,sizeof h);
}
int main(){
while(~scanf("%d%d",&n,&m)&&n){
Q();
for(int i=1;i<=m;i++){
scanf("%d%d",&t1,&t2);
fl[t1][t2]=fl[t2][t1]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(!fl[i][j]&&i!=j)lj(i,j);
}
for(int i=1;i<=n;i++){
if(!dfn[i])tarjan(i,0);
}
for(int x=1;x<=cnt;x++){
memset(flag,0,sizeof flag);
memset(co,0,sizeof co);
for(int i=he[x];i;i=h[i].nex)flag[h[i].v]=1;
//cout<<x<<endl;
//for(int i=he[x];i;i=h[i].nex)cout<<h[i].v<<' ';cout<<endl;
int S=h[he[x]].v;co[S]=1;
if(!pd(S)){
for(int i=he[x];i;i=h[i].nex)fsy[h[i].v]=1;
}//youjihuan keyicanjia
}
int ans=n;
for(int i=1;i<=n;i++)ans-=fsy[i];
cout<<ans<<endl;
}
return 0;
}
Knights of the Round Table的更多相关文章
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
- POJ 2942 Knights of the Round Table
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 10911 Acce ...
- poj 2942 Knights of the Round Table 圆桌骑士(双连通分量模板题)
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 9169 Accep ...
- 【LA3523】 Knights of the Round Table (点双连通分量+染色问题?)
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...
- POJ 2942 Knights of the Round Table - from lanshui_Yang
Description Being a knight is a very attractive career: searching for the Holy Grail, saving damsels ...
- UVALive - 3523 - Knights of the Round Table
Problem UVALive - 3523 - Knights of the Round Table Time Limit: 4500 mSec Problem Description Input ...
- poj 2942 Knights of the Round Table - Tarjan
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...
- 【POJ】2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...
- POJ 2942 Knights of the Round Table 黑白着色+点双连通分量
题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...
- [POJ2942][LA3523]Knights of the Round Table
[POJ2942][LA3523]Knights of the Round Table 试题描述 Being a knight is a very attractive career: searchi ...
随机推荐
- codeforces 1114C
题目连接 : https://codeforces.com/contest/1114/problem/C 题目大意:给一个整数n(1e18>=n>=0),和一个整数k(1e12>=k ...
- PAT (Basic Level) Practise (中文)- 1005. 继续(3n+1)猜想 (25)
http://www.patest.cn/contests/pat-b-practise/1005 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证 ...
- 深入浅出:了解JavaScript的六种继承
了解继承前我们需要了解函数的构造,方便我们理解. 常见六种继承方式: 1.原型继承call和apply: 2.原型拷贝:循环父函数protype的key值=子函数prototype的key值: 3.原 ...
- find cat sed awk 简单组合使用
find:查找 // .表示当前目录: /表示根目录: | 管道符: xargs表示将前面的搜索接口作为参数传递到后面的命令中:grep 过滤 // xxxx表示文件名 1.查找指定文件名的文 ...
- HTTP协议原理
HTTP是一个客户端终端(用户)和服务器端(网站)请求和应答的标准(TCP).通过使用网页浏览器.网络爬虫或者其它的工具,客户端发起一个HTTP请求到服务器上指定端口(默认端口为80).我们称这个客户 ...
- vue.js 一(基础环境搭建)
之前由于看了React的东西,写了两篇React的脚手架搭建,一是给自己记一点可用的东西,免得每次都去找,毕竟搭建环境在项目相对固定的时期不是经常要干的事情,一段时间不用就会忘记了. 前端的js框架还 ...
- 3D全景漫游
全景图共分为三种: ①球面全景图 利用一张全景图围成一个球,自身位置位于球体内.由于图片是矩形,所以最上和最下的缝合处很明显就能够看得出来. 球面全景图是最接近人眼的构建模式,若利用多个立面构建,拼接 ...
- Python Map, Filter and Reduce
所属网站分类: python基础 > 函数 作者:慧雅 原文链接: http://www.pythonheidong.com/blog/article/21/ 来源:python黑洞网 www. ...
- Ralph W. Tyler【拉尔夫·泰勒】
Ralph W. Tyler Anyone who cares about what schools and colleges teach and how their student learn wi ...
- python模块汇总练习
模块练习 1.random模块 # print(random.random()) # print(random.randint(1,3)) #模拟随机验证码 def make_code(n=5): r ...