BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】
题目
去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。
在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数。他现在长大了,题目也变难了。
求如下表达式的值:

其中 表示ij的约数个数。
他发现答案有点大,只需要输出模1000000007的值。
输入格式
第一行一个整数n。
输出格式
一行一个整数ans,表示答案模1000000007的值。
输入样例
2
输出样例
8
提示
对于100%的数据n <= 10^9。
题解
这题推导和SDOI2015约数个数和那道题是一样的
只不过计算的方式有差别
这道题没有多组询问,而且n特别大【不能O(n)实现】,要用杜教筛
最后推出式子:
\]
如果我们记
\]
那么式子可以写成:
\]
显然可以分块计算
因为\(n<=10^9\),所以对于\(\mu\)的前缀和我们采用杜教筛,时间复杂度\(O(n^{\frac{2}{3}}logn)\)
对于\(sum(n)\),我们内部也分块计算,时间复杂度\(O(\int_{0}^{\sqrt{n}} x^{\frac{1}{2}} dx) = O(\frac{2}{3} n^{\frac{3}{4}}) = O(n^{\frac{3}{4}})\)
所以总的复杂度\(O(n^{\frac{2}{3}}logn + n^{\frac{3}{4}})\)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000,P = 1000000007;
typedef map<LL,LL> Map;
Map _mu;
Map::iterator it;
LL p[maxn],pi,mu[maxn],N,n;
int isn[maxn];
void init(LL n){
N = (LL)pow(n,2.0 / 3.0);
mu[1] = 1;
for (int i = 2; i < N; i++){
if (!isn[i]) p[++pi] = i,mu[i] = -1;
for (int j = 1; j <= pi && i * p[j] < N; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}
for (int i = 1; i < N; i++) mu[i] = (mu[i - 1] + mu[i]) % P;
}
LL sum(LL x){
LL ans = 0;
for (int i = 1,nxt; i <= x; i = nxt + 1){
nxt = x / (x / i);
ans = (ans + (nxt - i + 1) * (x / i) % P) % P;
}
return ans;
}
LL S(LL n){
if (n < N) return mu[n];
if ((it = _mu.find(n)) != _mu.end())
return it->second;
LL ans = 1;
for (int i = 2,nxt; i <= n; i = nxt + 1){
nxt = n / (n / i);
ans = (ans - (nxt - i + 1) * S(n / i) % P) % P;
}
return _mu[n] = ans;
}
int main(){
cin >> n;
init(n);
LL ans = 0;
for (int i = 1,nxt; i <= n; i = nxt + 1){
nxt = n / (n / i);
LL tmp = sum(n / i);
tmp = tmp * tmp % P;
ans = ans + (S(nxt) - S(i - 1)) % P * tmp % P;
}
ans = (ans % P + P) % P;
cout << ans << endl;
return 0;
}
BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】的更多相关文章
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...
- BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】
首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\su ...
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
- LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \ ...
随机推荐
- OpenGL小试牛刀第一季
效果截图:代码展示:using System;using System.Collections.Generic;using System.ComponentModel;using System.Dat ...
- NFS缓存IO机制
NFS的缓存IO机制<一> async 参数模式下分析 NFS 默认的mount参数为async,async 参数表示内核不会透传程序的IO请求给sever,对于写IO会延迟执行,积累一定 ...
- SC || Chapter 5 复习向
可复用性 ┉┉∞ ∞┉┉┉┉∞ ∞┉┉┉∞ ∞┉┉ 行为子结构 对于父子的继承关系的要求: ·子类可以增加方法,但不可以删 ·子类需实现抽象类型中未实现的方法 ·子类重写(override)的方法必须 ...
- jsp页面之间传值 以及如何取出url的参数
写项目时往往要写多个页面,而多个jsp之间传值有时是必要的,这时可以用到如下方法: 而在另一个页面取值可以用:${param.xxx} 此处的xxx就是要传递的值
- JS与 JSON(一个菜鸟的不正经日常)
今天学习了json的一些知识, 1 . 什么是json 1.1 JSON 英文全称 JavaScript Object Notation. 1.2 JSON 是一种轻量级的数据交换格式,用于存储和 ...
- Java常用的一些容器
转自:https://www.cnblogs.com/LipeiNet/p/5888513.html 前言:在java开发中我们肯定会大量的使用集合,在这里我将总结常见的集合类,每个集合类的优点和缺点 ...
- token_get_all()函数
token_get_all (PHP 4 >= 4.2.0, PHP 5) token_get_all — 将提供的源码按 PHP 标记进行分割,可以用作php源代码的压缩,会按照固定的分解方法 ...
- H5 JS判断客户端是否是iOS或者Android手机移动端
<script type="text/javascript"> var u = navigator.userAgent; || u.indexOf(; //androi ...
- Python入门基本语法
Python入门 以下主要讲述Python的一些基础语法,包含行的缩进在python中的重要意义,python中常见的保留字和引号的使用,如何实现单行注释和多行注释. print("he ...
- AD采样求平均STM32实现
iADC_read(, &u16NTC_1_Sample_Val_ARR[]); == ui8FirstSampleFlag) { ; i<; i++) { u16NTC_1_Sampl ...