本题可化成更一般的问题:离线动态图询问连通性

当然可以利用它的特殊性质,采用在线线段树维护一些标记的方法

Description

  有一天,由于某种穿越现象作用,你来到了传说中的小人国。小人国的布局非常奇特,整个国家的交通系统可
以被看成是一个2行C列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一条道路,所以总共有2C个
城市和3C-2条道路。 小人国的交通状况非常槽糕。有的时候由于交通堵塞,两座城市之间的道路会变得不连通,
直到拥堵解决,道路才会恢复畅通。初来咋到的你决心毛遂自荐到交通部某份差事,部长听说你来自一个科技高度
发达的世界,喜出望外地要求你编写一个查询应答系统,以挽救已经病入膏肓的小人国交通系统。 小人国的交通
部将提供一些交通信息给你,你的任务是根据当前的交通情况回答查询的问题。交通信息可以分为以下几种格式:
Close r1 c1 r2 c2:相邻的两座城市(r1,c1)和(r2,c2)之间的道路被堵塞了;Open r1 c1 r2 c2:相邻的两座城
市(r1,c1)和(r2,c2)之间的道路被疏通了;Ask r1 c1 r2 c2:询问城市(r1,c1)和(r2,c2)是否连通。如果存在一
条路径使得这两条城市连通,则返回Y,否则返回N;

Input

  第一行只有一个整数C,表示网格的列数。接下来若干行,每行为一条交通信息,以单独的一行“Exit”作为
结束。我们假设在一开始所有的道路都是堵塞的。我们保证 C小于等于100000,信息条数小于等于100000。

Output

  对于每个查询,输出一个“Y”或“N”。


题目分析

这里提供一种更加一般的模型,即离线动态图连通性。

大体的思路是:把所有操作都离线之后,对询问分治,将每个询问看做线段树的一个节点(因为询问天然有序),并且记录当前剩余操作(可以是在过程里带vector)。那么这样在处理到每个叶子节点的时候,就已经把有关的操作都执行了。最后离开当前节点时,按栈序撤销并查集操作。

这个方法的时间复杂度是$O(m \log m \log n)$($\log n$是可撤销并查集的复杂度)。其优化的本质在于,让一段共用边的操作同时处理。

那么这里有一个很具有启发性的思路:对于一类询问$m$次,每次询问基于若干个元素的问题,可以通过离线分治的方式减少它们的冗余操作,将复杂度将为$O(m \log m \log n)$。当然最大的缺陷在于必须离线(而且过程里挂vector是不是太占空间了?)

 #include<bits/stdc++.h>
const int maxn = ; struct Edge
{
int u,v,s,t;
Edge(int a=, int b=, int c=, int d=):u(a),v(b),s(c),t(d) {}
};
int n,qNum,top;
int mp[][maxn],fat[maxn],size[maxn];
typedef std::vector<Edge> vec;
vec opt;
std::map<int, int> tag[maxn];
std::pair<int, int> qr[maxn],stk[maxn<<];
char str[]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
int find(int x)
{
while (x!=fat[x]) x = fat[x];
return x;
}
void merge(int x, int y)
{
int fx = find(x), fy = find(y);
if (size[fx] > size[fy]) std::swap(fx, fy);
stk[++top] = std::make_pair(fx, fy);
fat[fx] = fy, size[fy] += size[fx];
}
void cancel()
{
int x = stk[top].first, y = stk[top].second;
fat[x] = x, size[y] -= size[x];
}
void solve(int l, int r, vec opt)
{
vec L,R;
int mid = (l+r)>>, tmp = top;
for (int i=, mx=opt.size(); i<mx; i++)
{
int s = opt[i].s, t = opt[i].t;
if (s <= l&&r <= t) merge(opt[i].u, opt[i].v);
else{
if (s <= mid) L.push_back(opt[i]);
if (t > mid) R.push_back(opt[i]);
}
}
if (l==r) puts(find(qr[l].first)==find(qr[l].second)?"Y":"N");
else solve(l, mid, L), solve(mid+, r, R);
while (tmp!=top) cancel(), --top;
}
int main()
{
n = read();
for (int i=, cnt=; i<=n; i++)
mp[][i] = ++cnt, mp[][i] = ++cnt;
for (int idx,idy; ;)
{
scanf("%s",str);
if (str[]=='E') break;
idx = mp[read()][read()], idy = mp[read()][read()];
if (str[]=='O'){
opt.push_back(Edge(idx, idy, qNum+, -));
tag[idx][idy] = tag[idy][idx] = opt.size()-;
}
if (str[]=='C') opt[tag[idx][idy]].t = qNum;
if (str[]=='A') qr[++qNum] = std::make_pair(idx, idy);
}
for (int i=, mx=opt.size(); i<mx; i++)
if (opt[i].t==-) opt[i].t = qNum;
for (int i=; i<=(n<<); i++) fat[i] = i, size[i] = ;
solve(, qNum, opt);
return ;
}

END

【离线 撤销并查集 线段树分治】bzoj1018: [SHOI2008]堵塞的交通traffic的更多相关文章

  1. 【线段树】bzoj1018 [SHOI2008]堵塞的交通traffic

    线段树的每个叶子节点存一列. 每个节点维护六个域,分别是左上左下.左上右上.左上右下.左下右上.左下右下.右上右下在区间内部的连通性,不考虑绕出去的情况. 初始每个叶子的左上左下.右上右下是连通的. ...

  2. 【Codeforces576E_CF576E】Painting Edges(可撤销并查集+线段树分治)

    题目 CF576E 分析: 从前天早上肝到明天早上qwq其实颓了一上午MC ,自己瞎yy然后1A,写篇博客庆祝一下. 首先做这题之前推荐一道很相似的题:[BZOJ4025]二分图(可撤销并查集+线段树 ...

  3. 【BZOJ4025】二分图(可撤销并查集+线段树分治)

    题目: BZOJ4025 分析: 定理:一个图是二分图的充要条件是不存在奇环. 先考虑一个弱化的问题:保证所有边出现的时间段不会交叉,只会包含或相离. 还是不会?再考虑一个更弱化的问题:边只会出现不会 ...

  4. [BZOJ1018][SHOI2008]堵塞的交通traffic 线段树维护连通性

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MB Submit: 3795  Solved: 1253 [Sub ...

  5. [CSP-S模拟测试]:地理课(并查集+线段树分治)

    题目传送门(内部题146) 输入格式 从$geography.in$读入数据. 第一行两个数$n,m$,表示有$n$个点,$m$个时刻.接下来$m$行每行三个数,要么是$1\ u\ v$,要么是$2\ ...

  6. [BZOJ1018][SHOI2008]堵塞的交通traffic 时间分治线段树

    题面 介绍一种比较慢的但是好想的做法. 网上漫天的线段树维护联通性,然后想起来费很大周折也很麻烦.我的做法也是要用线段树的,不过用法完全不同. 这个东西叫做时间分治线段树. 首先我们建一个\(1..m ...

  7. Bzoj1018[SHOI2008]堵塞的交通traffic(线段树)

    这题需要维护连通性,看到有连接删除,很容易直接就想LCT了.然而这题点数20w操作10w,LCT卡常估计过不去.看到这个东西只有两行,考虑能否用魔改后的线性数据结构去维护.我想到了线段树. 考虑如果两 ...

  8. bzoj1018[SHOI2008]堵塞的交通traffic——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1018 巧妙的线段树.维护矩阵四个角的连通性. 考虑两个点连通的可能路径分成3部分:两点左边. ...

  9. [bzoj1018][SHOI2008]堵塞的交通traffic_线段树

    bzoj-1018 SHOI-2008 堵塞的交通traffic 参考博客:https://www.cnblogs.com/MashiroSky/p/5973686.html 题目大意:有一天,由于某 ...

随机推荐

  1. React中方法的this绑定

    第一种 在组件(类)的constructor中绑定this class Demo extends Component { constructor(this) { super(this) this.st ...

  2. 微信站 - 实现复制功能 clipboard

    <script src="https://cdn.bootcss.com/clipboard.js/1.5.9/clipboard.js"></script> ...

  3. 《SQL 进阶教程》 case:在 UPDATE 语句里进行条件分支

    1.对当前工资为30万日元以上的员工,降薪10%:2.对当前工资为25万日元以上且不满28万日元的员工,加薪20% update salaries set salary = case when sal ...

  4. excel 公式2列合并

    =A2&"="&C2 ="UPDATE comm_department SET parent_id='"&D2&"' ...

  5. CC20:高度最小的BST

    题目 对于一个元素各不相同且按升序排列的有序序列,请编写一个算法,创建一棵高度最小的二叉查找树. 给定一个有序序列int[] vals,请返回创建的二叉查找树的高度. 解法 这道题感觉如果没有创建树的 ...

  6. MiniProfiler NET Core

    MiniProfiler 来分析 ASP.NET Core 应用 它会把结果直接放在页面的左下角,随时可以点击查看:这样的话就可以感知出你的程序运行的怎么样:同时这也意味着,在你开发新功能的同时,可以 ...

  7. kali linux 通过跑包的方式破解wifi密码

    1. wlan0开启monitor mode    :    airmon-ng start wlan0 2. 查看附近的无线网络     : airodump-ng wlan0mon 3. 抓取无线 ...

  8. Swagger 2.0 集成配置

    传统的API文档编写存在以下几个痛点: 对API文档进行更新的时候,需要通知前端开发人员,导致文档更新交流不及时: API接口返回信息不明确 大公司中肯定会有专门文档服务器对接口文档进行更新. 缺乏在 ...

  9. 2017年3月14日-----------乱码新手自学.net 之Authorize特性与Forms身份验证(登陆验证、授权小实例)

    有段时间没写博客了,最近工作比较忙,能敲代码的时间也不多. 我一直有一个想法,想给单位免费做点小软件,一切思路都想好了,但是卡在一个非常基础的问题上:登陆与授权. 为此,我看了很多关于微软提供的Ide ...

  10. .net笔试题二(填空题、选择题)

    1.面向对象的语言具有_______性.________性._______性答:封装.继承.多态. 2.能用foreach遍历访问的对象需要实现 ____________接口或声明__________ ...