Add Date 2014-09-23

Maximum Product Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

简单来说就是在一个 int 数组中找一段连续的子数组,使其乘积最大,数组中包含正数、负数和0。不考虑乘积太大超出范围。

解法一:

动态规划的方法,今天在微信“待字闺中”中看到的,借来分享。遍历一遍,优于解法二,复杂度O(n).

 int max2(int a, int b) {
if(a > b) return a;
return b;
} int max3(int a, int b, int c) {
return max2(max2(a, b), c);
} int min2(int a, int b) {
if(a > b) return b;
return a;
} int min3(int a, int b, int c) {
return min2(min2(a, b), c);
} int maxProduct(int A[], int n) {
int max = A[];
int min = A[];
int a = max;
for(int i = ; i < n; ++i) {
int tmpMax = max * A[i];
int tmpMin = min * A[i];
max = max3(tmpMax, tmpMin, A[i]);
min = min3(tmpMax, tmpMin, A[i]);
a = max2(max, a);
}
return a;
}

解法二:

之前做过找连续子数组使其加和最大,比较简单,见《剑指offer》Q31。

刚开始也试图从那道题中找思路,发现不太科学…后来自己摸索出一个思路,分享一下。

首先,任何一个数字和0相乘得到的都是0;另外,不考虑0的情况下,因为数字都是整数,所以乘积的绝对值是不会变小的;再次,负负得正。

基于这三点考虑,首先基于递归的思想用0分段,也就是说,把数组 A 拆分为 [一段不包含0的数组]、[0]、[剩下的数组],并设 rel1 为不包含0的子数组得到的最大乘积,rel2 为剩下的数组得到的最大乘积,那么,数组 A 的最大乘积就是 max{rel1,0,rel2}。rel2递归的用这个思路得到。

然后,就是求一个不包含0的数组的最大乘积。由于负负得正,可以想到,如果负数的个数为偶数,那么所有的数字相乘就是那个最大乘积;如果负数的个数为奇数,那么一定是某一个负数的左边所有数字乘积或者右边所有数字乘积为最大,所以就可以从前向后遍历数组,并把所有元素相乘,用 numAll1 记录这个乘积,同时每次更新 num1 为从前到后相乘过程中最大的乘积;然后再从后向前遍历数组,用 numAll2 记录乘积,num2 记录最大值,这样整个数组的最大乘积就是 max{num1,num2}。

如果你觉得不理解为什么最大乘积的子数组一定是从第一个数字连续的一个子数组,或者是从最后一个数字连续的子数组,可以这样想:

如果这个乘积最大的子数组是中间的某一段,当然排除掉只有一个元素且为负数的情况,那么这个乘积一定是正数(这个还不懂的话自己想一下吧,简单的),如果

1.这段子数组左边(右边)是全正的,那么和左边(右边)所有的数相乘的结果一定不会比当前的结果小,所以可以从左边(右边)连续;所以这段子数组左边和右边一定都有负数!

2.这段子数组左边(右边)有偶数个负数,同1是不可能的;而且如果有多个负数,一定可以有偶数个可以包含在中间这段子数组中使乘积更大;所以一定左边和右边各有一个负数!

3.如果左边和右边各有一个负数,那么就有两个负数,这样的话把整个数组相乘的结果一定不小于中间这段子数组。

这个算法中遍历整个数组三次,复杂度为O(n).

终于把逻辑说完了,个人觉得很啰嗦,只是想说明白点,不知道大家有没明白,下面附 code,欢迎其它思路。

 class Solution {
public:
int maxProductNo0(int A[], int n) { //没有0的数组求最大乘积
int num1 = A[];
int numAll1 = A[];
for(int i = ; i < n; ++i) {
numAll1 *= A[i];
num1 = numAll1 > num1 ? numAll1 : num1;
} int num2 = A[n-];
int numAll2 = A[n-];
for(int i = n-; i >= ; --i) {
numAll2 *= A[i];
num2 = numAll2 > num2 ? numAll2 : num2;
}
return num1 > num2 ? num1 : num2;
} int maxProduct(int A[], int n) { //求数组最大乘积
if(A == NULL || n < )
return ;
int index0 = ;
int rel1 = A[];
int rel2 = A[];
bool have0 = false;
for(; index0 < n; ++index0) {
if(A[index0] == ) {
have0 = true;
break;
}
}
if(index0 > )
rel1 = maxProductNo0(A, index0); //没有0的数组的最大乘积
if(n-index0- > )
rel2 = maxProduct(A+index0+, n-index0-); //剩下的数组的最大乘积
rel1 = rel1 > rel2 ? rel1 : rel2;
if(have0)
rel1 = rel1 > ? rel1 : ;
return rel1;
}
};

【LeetCode】Maximum Product Subarray 求连续子数组使其乘积最大的更多相关文章

  1. [LeetCode] Maximum Product Subarray 求最大子数组乘积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  2. [leetcode]523. Continuous Subarray Sum连续子数组和(为K的倍数)

    Given a list of non-negative numbers and a target integer k, write a function to check if the array ...

  3. LeetCode Maximum Product Subarray(枚举)

    LeetCode Maximum Product Subarray Description Given a sequence of integers S = {S1, S2, . . . , Sn}, ...

  4. LeetCode Maximum Product Subarray 解题报告

    LeetCode 新题又更新了.求:最大子数组乘积. https://oj.leetcode.com/problems/maximum-product-subarray/ 题目分析:求一个数组,连续子 ...

  5. 连续子数组的最大乘积及连续子数组的最大和(Java)

    1. 子数组的最大和 输入一个整形数组,数组里有正数也有负数.数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和.求所有子数组的和的最大值.例如数组:arr[]={1, 2, 3, -2, ...

  6. [LeetCode] Maximum Product Subarray 连续数列最大积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. lintcode :continuous subarray sum 连续子数组之和

    题目 连续子数组求和 给定一个整数数组,请找出一个连续子数组,使得该子数组的和最大.输出答案时,请分别返回第一个数字和最后一个数字的值.(如果两个相同的答案,请返回其中任意一个) 样例 给定 [-3, ...

  8. Maximum Product Subarray 最大连续乘积子集

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  9. LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关

    Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...

随机推荐

  1. robotframework使用之元素定位动态ID方法

    转自: http://blog.csdn.net/u011757108/article/details/53418671 一个弹出框所有元素ID竟然的动态的,关闭后再打开,里面的ID又变! 如下图:  ...

  2. 【C语言天天练(二)】statickeyword

    引言:                 statickeyword不仅能够修饰变量.并且能够修饰函数.了解它的使用方法,不仅对阅读别人的代码有帮助,也有助于自己写出更加健壮的程序. 使用方法:     ...

  3. StringBuilder的append、StringBuffer的append和String str = "a"+"b"的区别?

    大家都知道String+String会开销额外的系统资源,粗略的原因是String是不可变类,每一步操作都会返回新的String变量,占用空间及时间. 其实我的理解不是这样的,我们来看看String+ ...

  4. python实现接口测试到unittest框架集成

    接口测试是面试测试岗位基本都会问到的问题,但是对于一些刚做测试的小伙伴可能并不是很熟悉,也有可能了解接口测试,但是完全不知道接口自动化怎么做.下面我们大概介绍一下. 首先我们需要知道接口自动化测试的目 ...

  5. JavaWeb学习总结第一篇--初识JavaWeb

    JavaWeb学习总结(一)-- 初识JavaWeb 一:Web相关概念 Web程序也就是一般所说的网站,由服务器.客户端浏览器和网络组成.Web程序的好处就是使用简单,不需要安装.学习,有一台电脑. ...

  6. Android 红色小圆球提示气泡 BadgeView

    今天给大家分享两个实用有简单的一个小圆球提示气泡: BadgeView 参考地址: https://github.com/qstumn/BadgeView;       个人地址:http://git ...

  7. EasyPlayerPro Windows播放器电子放大/局部放大播放功能实现

    背景描述 在视频监控软件中,我们看到很多的软件都有电子放大功能, 按住鼠标左键不放,框选一个区域,再松开鼠标左键,即对选中的区域进行放大显示, 且可以重复该操作,逐步放大所需显示的区域, 有没有觉得, ...

  8. Chrome性能分析工具lightHouse用法指南

    本文主要讲如何使用Chrome开发者工具linghtHouse进行页面性能分析. 1.安装插件 非常简单,点击右上角的“添加至Chrome”即可. 2.使用方式 1)打开要测试的页面,点击浏览器右上角 ...

  9. sed 简单用法

    sed的一个简单用法: eg:在某一个文件中的一个aaa字段前后添加某些字段. 在aaa前面添加字段:sed -ne 's/aaa/&HELLO/p' test 输出结果:aaaHELLO 在 ...

  10. (转)jQuery的deferred对象详解

    作者: 阮一峰 日期: 2011年8月16日 jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本. 每个版本都会引入一些新功能.今天我想介绍的,就是从jQuery 1.5.0版本开始 ...