The best programmers of Embezzland compete to develop a part of the project called "e-Government" — the system of automated statistic collecting and press analysis.

We know that any of the k citizens can become a member of the Embezzland government. The citizens' surnames are a1, a2, ..., ak. All surnames are different. Initially all k citizens from this list are members of the government. The system should support the following options:

  • Include citizen ai to the government.
  • Exclude citizen ai from the government.
  • Given a newspaper article text, calculate how politicized it is. To do this, for every active government member the system counts the number of times his surname occurs in the text as a substring. All occurrences are taken into consideration, including the intersecting ones. The degree of politicization of a text is defined as the sum of these values for all active government members.

Implement this system.

Input

The first line contains space-separated integers n and k (1 ≤ n, k ≤ 105) — the number of queries to the system and the number of potential government members.

Next k lines contain the surnames a1, a2, ..., ak, one per line. All surnames are pairwise different.

Next n lines contain queries to the system, one per line. Each query consists of a character that determines an operation and the operation argument, written consecutively without a space.

Operation "include in the government" corresponds to the character "+", operation "exclude" corresponds to "-". An argument of those operations is an integer between 1 and k — the index of the citizen involved in the operation. Any citizen can be included and excluded from the government an arbitrary number of times in any order. Including in the government a citizen who is already there or excluding the citizen who isn't there changes nothing.

The operation "calculate politicization" corresponds to character "?". Its argument is a text.

All strings — surnames and texts — are non-empty sequences of lowercase Latin letters. The total length of all surnames doesn't exceed 106, the total length of all texts doesn't exceed 106.

Output

For any "calculate politicization" operation print on a separate line the degree of the politicization of the given text. Print nothing for other operations.

Examples

Input
7 3
a
aa
ab
?aaab
-2
?aaab
-3
?aaab
+2
?aabbaa
Output
6
4
3
6

题意:有M个不同的单词,和N个操作。先给出M个单词,然后N操作,

操作1,删去第i个单词(如果已经删了,则忽略);

操作2,添加,亦然。

操作3,给出字符串S,查询当前存在的单词在字符串S种出现了多少次(可以重复统计)。

思路:对M个单词建立AC自动机,然后是fail树,对fail树求dfs序。

假设没有求fail树和dfs序,只有fail指针,我求S出现次数的时候,S在AC自动机上跑,对于每一个当前Si在AC自动机的Now位置,都向上累加个数,表示以i为结尾的字符串,出现了多少次。

建立了fail树后,x的fail指针是x的爸爸,那么fail出现的时候,x也出现。即x出现的时候,子树都会++;所以在树状数组上+1,-1;

得到dfs序,询问串S时,在AC自动机上面跑,累加树状数组的贡献。

准确性:因为在询问串AC自动机上面跑的时候,我跑的深度是最大的,对它有贡献的都利用fail树和数状数组更新了,做到了不重不漏。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int ch[maxn][],cnt=; //trie树
int pos[maxn],st[maxn]; //在trie树的位置。
int Laxt[maxn],Next[maxn],To[maxn],tot; //fail树
int q[maxn],fail[maxn],head,tail; //fail树
int in[maxn],out[maxn],sum[maxn],times;//dfs序
char c[maxn];
char getopt() { char c=getchar(); while(c!='+'&&c!='-'&&c!='?') c=getchar(); return c;}
void addedge(int u,int v){ Next[++tot]=Laxt[u]; Laxt[u]=tot; To[tot]=v; }
int insert()
{
int L=strlen(c+),Now=;
for(int i=;i<=L;i++){
if(!ch[Now][c[i]-'a']) ch[Now][c[i]-'a']=++cnt;
Now=ch[Now][c[i]-'a'];
} return Now;
}
void buildfail()
{
for(int i=;i<;i++){
if(ch[][i]) q[++head]=ch[][i],fail[ch[][i]]=;
else ch[][i]=;
}
while(tail<head){
int Now=q[++tail];
for(int i=;i<;i++){
if(ch[Now][i]) {
q[++head]=ch[Now][i]; fail[ch[Now][i]]=ch[fail[Now]][i];
}
else ch[Now][i]=ch[fail[Now]][i];
}
}
for(int i=;i<=cnt;i++) addedge(fail[i],i);
}
void dfs(int u)
{
in[u]=++times;
for(int i=Laxt[u];i;i=Next[i]) dfs(To[i]);
out[u]=times;
}
void addsum(int x,int val){ while(x<=times){ sum[x]+=val; x+=(-x)&x;}}
int query(int x){ int res=;while(x){res+=sum[x];x-=(-x)&x;}return res;}
void solve()
{
int L=strlen(c+),Now=,ans=;
for(int i=;i<=L;i++){
Now=ch[Now][c[i]-'a'];
ans+=query(in[Now]);
}
printf("%d\n",ans);
}
int main()
{
int N,M,x,i,j;
scanf("%d%d",&N,&M);
for(i=;i<=M;i++){
st[i]=;
scanf("%s",c+);
pos[i]=insert();
}
buildfail();
dfs();
for(i=;i<=M;i++){
addsum(in[pos[i]],);
addsum(out[pos[i]]+,-);
}
for(i=;i<=N;i++){
char opt=getopt();
if(opt=='?'){
scanf("%s",c+);
solve();
}
else{
scanf("%d",&x);
if(opt=='+'){
if(st[x]==) continue;st[x]=;
addsum(in[pos[x]],);
addsum(out[pos[x]]+,-);
}
else {
if(st[x]==) continue; st[x]=;
addsum(in[pos[x]],-);
addsum(out[pos[x]]+,);
}
}
}
return ;
}

CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)的更多相关文章

  1. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

  2. NOI 2011 阿狸的打字机 (AC自动机+dfs序+树状数组)

    题目大意:略(太长了不好描述) 良心LOJ传送门 先对所有被打印的字符串建一颗Trie树 观察数据范围,并不能每次打印都从头到尾暴力建树,而是每遍历到一个字符就在Trie上插入这个字符,然后记录每次打 ...

  3. BZOJ_2434_[NOI2011]_阿狸的打字机_(AC自动机+dfs序+树状数组)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2434 给出\(n\)个字符串,\(m\)个询问,对于第\(i\)个询问,求第\(x_i\)个字 ...

  4. BZOJ2434[Noi2011]阿狸的打字机——AC自动机+dfs序+树状数组

    题目描述 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小 ...

  5. 【BZOJ2434】[NOI2011]阿狸的打字机 AC自动机+DFS序+树状数组

    [BZOJ2434][NOI2011]阿狸的打字机 Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P ...

  6. BZOJ2434: [NOI2011]阿狸的打字机(AC自动机+dfs序+树状数组)

    [NOI2011]阿狸的打字机 题目链接:https://www.luogu.org/problemnew/show/P2414 题目背景 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. ...

  7. BZOJ 2434 阿狸的打字机(ac自动机+dfs序+树状数组)

    题意 给你一些串,还有一些询问 问你第x个串在第y个串中出现了多少次 思路 对这些串建ac自动机 根据fail树的性质:若x节点是trie中root到t任意一个节点的fail树的祖先,那么x一定是y的 ...

  8. BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组

    BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组 Description Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是 ...

  9. Codeforces Round #381 (Div. 2) D dfs序+树状数组

    D. Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

随机推荐

  1. VueJS字符串反转:String.reverse()

    HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  2. ThinkPHP中的模型命名

    当我们创建一个UserModel类的时候,其实已经遵循了系统的约定.ThinkPHP要求数据库的表名和模型类的命名遵循一定的规范,首先数据库的表名和字段全部采用小写形式,模型类的命名规则是除去表前缀的 ...

  3. Gson把对象转成json格式的字符串

    近期在做一个java web service项目,须要用到jason,本人对java不是特别精通,于是開始搜索一些java平台的json类库. 发现了google的gson.由于之前对于protoco ...

  4. android开发系列之使用xml自定义控件

    在android开发的过程中,有的时候面对多个Activity里面一些相同的布局,我们需要写多次相同的代码,同时这种方法给我们的项目维护也带来了很大不便.那么有没有一种可行的办法能够将Activity ...

  5. 吐血整理:PyTorch项目代码与资源列表 | 资源下载

    http://www.sohu.com/a/164171974_741733   本文收集了大量基于 PyTorch 实现的代码链接,其中有适用于深度学习新手的“入门指导系列”,也有适用于老司机的论文 ...

  6. 【Python】selenium调用IE11浏览器,报错“找不到元素”NoSuchWindowException: Message:Unable to find element on closed window

    当编写自动化脚本,定位浏览器元素时,报如下错误: 代码: >>> # coding=utf-8 >>> from selenium import webdriver ...

  7. UIScrollView奇葩不滑动

    首先要说声尼玛,真奇葩,从来都没有遇到过这个问题,首先描述一下背景: 我是用XIB拖拽了一个UIScrollView在View上,然后设置了frame,在ViewDidLoad里面,设置了scroll ...

  8. Java 基础系列之volatile变量(一)

    一.锁 两种特性:互斥性(mutual exclusion).可见性(visibility).原子性(atomic) 互斥性就是一次只有一个线程可以访问该共享数据,可见性就是释放锁之前,对共享数据的修 ...

  9. python 基础 8.1 r 正则对象

                                                                                                        ...

  10. postgres 备份数据库

    https://www.postgresql.org/docs/9.1/static/app-pgdump.html bash-4.2$ pg_dump -Fc xianlan_prod > / ...