Transportation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2464    Accepted Submission(s): 1052

Problem Description
There
are N cities, and M directed roads connecting them. Now you want to
transport K units of goods from city 1 to city N. There are many robbers
on the road, so you must be very careful. The more goods you carry, the
more dangerous it is. To be more specific, for each road i, there is a
coefficient ai. If you want to carry x units of goods along this road, you should pay ai * x2 dollars to hire guards to protect your goods. And what’s worse, for each road i, there is an upper bound Ci, which means that you cannot transport more than Ci units of goods along this road. Please note you can only carry integral unit of goods along each road.
You should find out the minimum cost to transport all the goods safely.
 
Input
There
are several test cases. The first line of each case contains three
integers, N, M and K. (1 <= N <= 100, 1 <= M <= 5000, 0
<= K <= 100). Then M lines followed, each contains four integers
(ui, vi, ai, Ci), indicating there is a directed road from city ui to vi, whose coefficient is ai and upper bound is Ci. (1 <= ui, vi <= N, 0 < ai <= 100, Ci <= 5)
 
Output
Output
one line for each test case, indicating the minimum cost. If it is
impossible to transport all the K units of goods, output -1.

 
Sample Input
2 1 2
1 2 1 2
2 1 2
1 2 1 1
2 2 2
1 2 1 2
1 2 2 2
 
Sample Output
4
-1
3
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  3661 3664 3665 3666 3669
本题的题一很简单,就是一个人需要运送k单位的货物,但是沿途的道路,过每个道路都需要花钱,cost的系数为a,每运送x单位的货物需要华为a*x*x的价格,我们可以在建立边的时候将其拆开
比如5单位的货物,话费需要a*5*5,但是我们可以将它一个一个单位的分开,就是1,4-1,9-4,16-9等等,每个边的容量都为1,除此之外在建立一个超级原点和一个超级汇点,直接跑最小费用最大流的模板就可以了
下面附上代码,由于第一次边的大小没有掌握好,结果超了内纯一次,
下次可得小心了
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
//最小费用最大流,求最大费用只需要取相反数,结果取相反数即可。
//点的总数为 N,点的编号 0~N-1
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to,next,cap,flow,cost;
} edge[MAXM*];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
N = n;
tol = ;
memset(head,-,sizeof (head));
}
void addedge (int u,int v,int cap,int cost)
{
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = ;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = ;
edge[tol].cost = -cost;
edge[tol].flow = ;
edge[tol].next = head[v];
head[v] = tol++;
}
bool spfa(int s,int t)
{
queue<int>q;
for(int i = ; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
}
dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i]. next)
{
int v = edge[i]. to;
if(edge[i].cap > edge[i].flow &&
dis[v] > dis[u] + edge[i]. cost )
{
dis[v] = dis[u] + edge[i]. cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t] == -)return false;
else return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s,int t,int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i != -; i = pre[edge[i^].to])
{
if(Min > edge[i].cap - edge[i]. flow)
Min = edge[i].cap - edge[i].flow;
}
for(int i = pre[t]; i != -; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i]. cost * Min;
}
flow += Min;
}
return flow;
}
int main(){
int n,m,sta;
while(scanf("%d%d%d",&n,&m,&sta)!=EOF){
memset(pre,,sizeof(pre));
memset(dis,,sizeof(dis));
memset(vis,false,sizeof(vis));
memset(edge,,sizeof(edge));
init(n+);
int u,v,a,c;
for(int i=;i<m;i++){
scanf("%d%d%d%d",&u,&v,&a,&c);
for(int j=;j<c;j++)
addedge(u,v,,a*(*j+)); }
int ans1=;
addedge(,,sta,);
addedge(n,n+,sta,);
int temp=minCostMaxflow(,n+,ans1);
if(temp!=sta)
puts("-1");
else
printf("%d\n",ans1); }
}
 
14745869 2015-09-07 20:51:51 Accepted 3667 998MS 3148K 2986 B G++

      

hdu3667的更多相关文章

  1. hdu3667 Transportation 费用与流量平方成正比的最小流 拆边法+最小费用最大流

    /** 题目:hdu3667 Transportation 拆边法+最小费用最大流 链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 题意:n个城市由 ...

  2. HDU3667 Transportation —— 最小费用流(费用与流量平方成正比)

    题目链接:https://vjudge.net/problem/HDU-3667 Transportation Time Limit: 2000/1000 MS (Java/Others)    Me ...

随机推荐

  1. .NET 读取视频文件

    该篇文章 复制别人的文章 在.NET中处理视频是一件痛苦的事情,.NET并没有提供视频处理的类.于是咱们只能找一些第三方的类库或者自己实现,在项目时间比较赶的情况下,自己实现是不可能的了,而且说不定会 ...

  2. Page_Load与sender -- PostBack是由哪个 ASP.NET控件引起 ?

    Page_Load与sender -- PostBack是由哪个 ASP.NET控件引起 ? 之前有讨论过ASP.NET Web Form "事件"里面的 "sender ...

  3. 阻止form元素内的input标签回车提交表单

    <form></form>标签内input元素回车会默认提交表单. 阻止回车默认提交表单: $('form').on('keydown', function (event) { ...

  4. python_96_类的继承1

    #面向对象3大特性:封装,多态,继承 # 继承可节省内存,减少代码 class People(): def __init__(self,name,age): self.Name=name self.A ...

  5. Java替换手机号掩码

    String tel = "18304072984"; // 括号表示组,被替换的部分$n表示第n组的内容 tel = tel.replaceAll("(\\d{3})\ ...

  6. iOS应用架构谈-part1概述

    当我们讨论客户端应用架构的时候,我们在讨论什么? 其实市面上大部分应用不外乎就是颠过来倒过去地做以下这些事情: --------------- --------------- ------------ ...

  7. CF-1114 (2019/02/11)

    CF-1114 A. Got Any Grapes? skip B. Yet Another Array Partitioning Task 将n个数分成连续的k组,使得每组的前m大的数字的总和最大. ...

  8. 手机web网页的设计

      Viewport(视口) 1.视口概念 描述:视口,就是视图窗口的简称,页面中视口大小实际上就是html元素的显示大小 说明:页面想要在移动端加载必须进行视口适配 如果不对页面进行调整,默认页面在 ...

  9. jenkins+maven+svn 自动化部署

    背景: 公司的web平台使用JAVA写的,但是不是用Tomcat部署的,代码内部自带了Web服务器,所以只需要有JAVA环境,将代码打包上传,启动脚本就可以. 项目是根据pom.xml打包成的是.zi ...

  10. 解析Vue.js中的computed工作原理

    我们通过实现一个简单版的和Vue中computed具有相同功能的函数来了解computed是如何工作的.写的十分的全面细致,具有一定的参考价值,对此有需要的朋友可以参考学习下.如有不足之处,欢迎批评指 ...