Cattell [6] maintains a great summary about existing Scalable SQL and NoSQL data stores. Hu [18] contributed another great summary for streaming databases. Druid feature-wise sits some-
where between Google’s Dremel [28] and PowerDrill [17]. Druid has most of the features implemented in Dremel (Dremel handles arbitrary nested data structures while Druid only allows for a single
level of array-based nesting) and many of the interesting compression algorithms mentioned in PowerDrill. Although Druid builds on many of the same principles as other distributed columnar data stores [15], many of these data stores are

designed to be more generic key-value stores [23] and do not sup
port computation directly in the storage layer. There are also other 
data stores designed for some of the same data warehousing issues 
that Druid is meant to solve. These systems include in-memory 
databases such as SAP’s HANA [14] and VoltDB [43]. These data 
stores lack Druid’slowlatency ingestion characteristics. Druidalso 
has native analytical features baked in, similar to ParAccel [34], 
however, Druid allows system wide rolling software updates with 
no downtime. 
Druid is similiar to C-Store [38] and LazyBase [8] in that it has 
twosubsystems,aread-optimizedsubsysteminthehistoricalnodes 
andawrite-optimizedsubsysteminreal-timenodes. Real-timenodes 
are designed to ingest a high volume of append heavy data, and do 
not support data updates. Unlike the two aforementioned systems, 
Druid is meant for OLAP transactions and not OLTP transactions. 
Druid’s low latency data ingestion features share some similar-
ities with Trident/Storm [27] and Spark Streaming [45], however,
both systems are focused on stream processing whereas Druid is 
focused on ingestion and aggregation. Stream processors are great 
complements to Druid as a means of pre-processing the data before 
the data enters Druid. 
There are a class of systems that specialize in queries on top of
cluster computing frameworks. Shark [13] is such a system for

queriesontopofSpark,andCloudera’sImpala[9]isanothersystem 
focused on optimizing query performance on top of HDFS. Druid
historical nodes download data locally and only work with native

Druid indexes. We believe this setup allows for faster query laten
cies. 
Druid leverages a unique combination of algorithms in its archi-
tecture. Although we believe no other data store has the same set

of functionality as Druid, some of Druid’s optimization techniques 
suchas using inverted indices to perform fast filter sarealsousedin
other data stores [26].
 
druid白皮书:http://static.druid.io/docs/druid.pdf

druid相关的时间序列数据库——也用到了倒排相关的优化技术的更多相关文章

  1. 时间序列数据库(TSDB)初识与选择(InfluxDB、OpenTSDB、Druid、Elasticsearch对比)

    背景 这两年互联网行业掀着一股新风,总是听着各种高大上的新名词.大数据.人工智能.物联网.机器学习.商业智能.智能预警啊等等. 以前的系统,做数据可视化,信息管理,流程控制.现在业务已经不仅仅满足于这 ...

  2. 时间序列数据库(TSDB)初识与选择

    时间序列数据库(TSDB)初识与选择 本文作者由 MageByte 团队的 「借来方向」编写,关注公众号 给你更多硬核技术 背景 这两年互联网行业掀着一股新风,总是听着各种高大上的新名词.大数据.人工 ...

  3. OpenTSDB介绍——基于Hbase的分布式的,可伸缩的时间序列数据库,而Hbase本质是列存储

    原文链接:http://www.jianshu.com/p/0bafd0168647 OpenTSDB介绍 1.1.OpenTSDB是什么?主要用途是什么? 官方文档这样描述:OpenTSDB is ...

  4. 时间序列数据库武斗大会之 KairosDB 篇

    [编者按] 刘斌,OneAPM后端研发工程师,拥有10多年编程经验,参与过大型金融.通信以及Android手机操作系的开发,熟悉Linux及后台开发技术.曾参与翻译过<第一本Docker书> ...

  5. 时间序列数据库概览——基于文件(RRD)、K/V数据库(influxDB)、关系型数据库

    一般人们谈论时间序列数据库的时候指代的就是这一类存储.按照底层技术不同可以划分为三类. 直接基于文件的简单存储:RRD Tool,Graphite Whisper.这类工具附属于监控告警工具,底层没有 ...

  6. [转帖]时间序列数据库 (TSDB)

    时间序列数据库 (TSDB) https://www.jianshu.com/p/31afb8492eff 0.3392019.01.28 10:51:33字数 5598阅读 4030 背景 2017 ...

  7. Akumuli时间序列数据库——列存储,LSM,MVCC

    Features Column-oriented time-series database. Log-structured append-only B+tree with multiversion c ...

  8. 时间序列数据库选型——本质是列存储,B-tree索引,抑或是搜索引擎中的倒排索引

    时间序列数据库最多,使用也最广泛.一般人们谈论时间序列数据库的时候指代的就是这一类存储.按照底层技术不同可以划分为三类. 直接基于文件的简单存储:RRD Tool,Graphite Whisper.这 ...

  9. Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识

    Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...

随机推荐

  1. IP、操作系统、移动OS

    IP IP地址 = 网络地址 + 主机地址/IP地址 = 网络地址 + 子网地址 + 主机地址. DNS :进行域名解析的服务器.             比如,sina.com(是域名).其实是一个 ...

  2. php图片本身有错无法显示的解决办法

    1.取消所有错误提示 2.如果没有报错,在header前(即设置输出格式前)使用ob_clean();

  3. Zabbix-20160817-高危SQL注入漏洞

    漏洞概述: zabbix是一个开源的企业级性能监控解决方案.近日,zabbix的jsrpc的profileIdx2参数存在insert方式的SQL注入漏洞,攻击者无需授权登陆即可登陆zabbix管理系 ...

  4. K均值算法总结

    这几天在一个项目上需要用到K均值聚类算法,以前都是直接利用百度老师copy一个Kmeans算法代码,这次想自己利用已知的算法思想编写一下,编写才知道,虽然熟悉了算法思想,真正实现时,还是遇到不少bug ...

  5. 【虚拟机】WIN8.1系统虚拟机完全彻底删除

    一.首先删除注册表 用管理员身份打开CMD,输入F:\>VMware-workstation-full-12.5.5-5234757.exe/clean,根据自己的虚拟机安装文件的路径进行改变( ...

  6. XMPP协议概述

    XMPP(Extensible Messaging and Presence Protocol,前称Jabber)是一种以 XML 为基础的开放式实时通信协议,关于它的协议细节,网上已经有太多分析文章 ...

  7. mnesia的脏写和事物写的测试

    在之前的文章中,测试了脏读和事物读之间性能差别,下面测试下脏写和事物写之间的性能差别: 代码如下: -module(mnesia_text). -compile(export_all). -recor ...

  8. 史上最浅显易懂的Git教程3 分支管理

    假设你准备开发一个新功能,但是需要两周才能完成,第一周你写了50%的代码,如果立刻提交,由于代码还没写完,不完整的代码库会导致别人不能干活了.如果等代码全部写完再一次提交,又存在丢失每天进度的巨大风险 ...

  9. WEB消息推送-comet4j

    一.comet简介: comet :基于 HTTP长连接的“服务器推”技术,是一种新的 Web 应用架构.基于这种架构开发的应用中,服务器端会主动以异步的方式向客户端程序推送数据,而不需要客户端显式的 ...

  10. 1_Jsp标签_简单自定义

    一 简介 主要用于移除jsp页面中的java代码 编写一个实现Tag接口的Java类,为避免需要实现不必要的方法,只需继承TagSupport类, 把页面java代码移到这个标签处理类中, 然后编写标 ...