Cattell [6] maintains a great summary about existing Scalable SQL and NoSQL data stores. Hu [18] contributed another great summary for streaming databases. Druid feature-wise sits some-
where between Google’s Dremel [28] and PowerDrill [17]. Druid has most of the features implemented in Dremel (Dremel handles arbitrary nested data structures while Druid only allows for a single
level of array-based nesting) and many of the interesting compression algorithms mentioned in PowerDrill. Although Druid builds on many of the same principles as other distributed columnar data stores [15], many of these data stores are

designed to be more generic key-value stores [23] and do not sup
port computation directly in the storage layer. There are also other 
data stores designed for some of the same data warehousing issues 
that Druid is meant to solve. These systems include in-memory 
databases such as SAP’s HANA [14] and VoltDB [43]. These data 
stores lack Druid’slowlatency ingestion characteristics. Druidalso 
has native analytical features baked in, similar to ParAccel [34], 
however, Druid allows system wide rolling software updates with 
no downtime. 
Druid is similiar to C-Store [38] and LazyBase [8] in that it has 
twosubsystems,aread-optimizedsubsysteminthehistoricalnodes 
andawrite-optimizedsubsysteminreal-timenodes. Real-timenodes 
are designed to ingest a high volume of append heavy data, and do 
not support data updates. Unlike the two aforementioned systems, 
Druid is meant for OLAP transactions and not OLTP transactions. 
Druid’s low latency data ingestion features share some similar-
ities with Trident/Storm [27] and Spark Streaming [45], however,
both systems are focused on stream processing whereas Druid is 
focused on ingestion and aggregation. Stream processors are great 
complements to Druid as a means of pre-processing the data before 
the data enters Druid. 
There are a class of systems that specialize in queries on top of
cluster computing frameworks. Shark [13] is such a system for

queriesontopofSpark,andCloudera’sImpala[9]isanothersystem 
focused on optimizing query performance on top of HDFS. Druid
historical nodes download data locally and only work with native

Druid indexes. We believe this setup allows for faster query laten
cies. 
Druid leverages a unique combination of algorithms in its archi-
tecture. Although we believe no other data store has the same set

of functionality as Druid, some of Druid’s optimization techniques 
suchas using inverted indices to perform fast filter sarealsousedin
other data stores [26].
 
druid白皮书:http://static.druid.io/docs/druid.pdf

druid相关的时间序列数据库——也用到了倒排相关的优化技术的更多相关文章

  1. 时间序列数据库(TSDB)初识与选择(InfluxDB、OpenTSDB、Druid、Elasticsearch对比)

    背景 这两年互联网行业掀着一股新风,总是听着各种高大上的新名词.大数据.人工智能.物联网.机器学习.商业智能.智能预警啊等等. 以前的系统,做数据可视化,信息管理,流程控制.现在业务已经不仅仅满足于这 ...

  2. 时间序列数据库(TSDB)初识与选择

    时间序列数据库(TSDB)初识与选择 本文作者由 MageByte 团队的 「借来方向」编写,关注公众号 给你更多硬核技术 背景 这两年互联网行业掀着一股新风,总是听着各种高大上的新名词.大数据.人工 ...

  3. OpenTSDB介绍——基于Hbase的分布式的,可伸缩的时间序列数据库,而Hbase本质是列存储

    原文链接:http://www.jianshu.com/p/0bafd0168647 OpenTSDB介绍 1.1.OpenTSDB是什么?主要用途是什么? 官方文档这样描述:OpenTSDB is ...

  4. 时间序列数据库武斗大会之 KairosDB 篇

    [编者按] 刘斌,OneAPM后端研发工程师,拥有10多年编程经验,参与过大型金融.通信以及Android手机操作系的开发,熟悉Linux及后台开发技术.曾参与翻译过<第一本Docker书> ...

  5. 时间序列数据库概览——基于文件(RRD)、K/V数据库(influxDB)、关系型数据库

    一般人们谈论时间序列数据库的时候指代的就是这一类存储.按照底层技术不同可以划分为三类. 直接基于文件的简单存储:RRD Tool,Graphite Whisper.这类工具附属于监控告警工具,底层没有 ...

  6. [转帖]时间序列数据库 (TSDB)

    时间序列数据库 (TSDB) https://www.jianshu.com/p/31afb8492eff 0.3392019.01.28 10:51:33字数 5598阅读 4030 背景 2017 ...

  7. Akumuli时间序列数据库——列存储,LSM,MVCC

    Features Column-oriented time-series database. Log-structured append-only B+tree with multiversion c ...

  8. 时间序列数据库选型——本质是列存储,B-tree索引,抑或是搜索引擎中的倒排索引

    时间序列数据库最多,使用也最广泛.一般人们谈论时间序列数据库的时候指代的就是这一类存储.按照底层技术不同可以划分为三类. 直接基于文件的简单存储:RRD Tool,Graphite Whisper.这 ...

  9. Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识

    Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...

随机推荐

  1. angular 视频教程

    在网上找了一些,视频教程.存在备用 angular 视频教程 百度云盘地址 小时前 1小时前 30 6 angular 4.0视频教程 链接:https://pan.baidu.com/s/1qXIt ...

  2. 文件I/O操作为什么叫输入/出流

    参考以下文档: http://blog.csdn.net/hguisu/article/details/7418161 我们关注的焦点是错误的,重点不在文件,我们关注的核心是数据流. 这种流可以是文本 ...

  3. hive分区(partition)简介

    一.背景 1.在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念. 2.分区表指的是在创建表 ...

  4. css:html() text() val()

    转http://www.jb51.net/article/35867.htm .html()用为读取和修改元素的HTML标签    对应js中的innerHTML .html()是用来读取元素的HTM ...

  5. Chrome自带恐龙小游戏的源码研究(二)

    在上一篇<Chrome自带恐龙小游戏的源码研究(一)>中实现了地面的绘制和运动,这一篇主要研究云朵的绘制. 云朵的绘制通过Cloud构造函数完成.Cloud实现代码如下: Cloud.co ...

  6. c#线程顺序执行

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  7. wifi认证Portal开发系列(二):FreeRadius的安装和测试、关联Mysql

    注:本次安装是基于FreeRadius 3版本进行安装配置的,在配置Mysql的过程中,与2版本有些不同.操作系统是CentOS 7 一.准备工作 工具的安装 #安装rz.sz命令用于文件上传 yum ...

  8. jdbc 模板 连接

    package itcast; import java.sql.Connection;import java.sql.DriverManager;import java.sql.ResultSet;i ...

  9. python学习(一)运行第一个python脚本

    当然这里指的是在linux或者unix下,像写bash脚本那样 #!/usr/bin/python print('The Bright Side ' + 'of Life...') 反正我建议就算一开 ...

  10. 有一个长为n的数组A,求满足0≤a≤b<n的A[b]-A[a]的最大值。 给定数组A及它的大小n,请返回最大差值。

    // ConsoleApplication10.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream& ...