699. Falling Squares
On an infinite number line (x-axis), we drop given squares in the order they are given.
The i-th square dropped (positions[i] = (left, side_length)) is a square with the left-most point being positions[i][0] and sidelength positions[i][1].
The square is dropped with the bottom edge parallel to the number line, and from a higher height than all currently landed squares. We wait for each square to stick before dropping the next.
The squares are infinitely sticky on their bottom edge, and will remain fixed to any positive length surface they touch (either the number line or another square). Squares dropped adjacent to each other will not stick together prematurely.
Return a list ans of heights. Each height ans[i] represents the current highest height of any square we have dropped, after dropping squares represented by positions[0], positions[1], ..., positions[i].
Example 1:
Input: [[1, 2], [2, 3], [6, 1]]
Output: [2, 5, 5]
Explanation:
After the first drop of positions[0] = [1, 2]: _aa _aa ------- The maximum height of any square is 2.
After the second drop of positions[1] = [2, 3]: __aaa __aaa __aaa _aa__ _aa__ -------------- The maximum height of any square is 5. The larger square stays on top of the smaller square despite where its center of gravity is, because squares are infinitely sticky on their bottom edge.
After the third drop of positions[1] = [6, 1]: __aaa __aaa __aaa _aa _aa___a -------------- The maximum height of any square is still 5. Thus, we return an answer of [2, 5, 5].
Example 2:
Input: [[100, 100], [200, 100]]
Output: [100, 100]
Explanation: Adjacent squares don't get stuck prematurely - only their bottom edge can stick to surfaces.
Note:
1 <= positions.length <= 1000.1 <= positions[i][0] <= 10^8.1 <= positions[i][1] <= 10^6.
Approach #1: C++. [Brute Force]
class Solution {
public:
vector<int> fallingSquares(vector<pair<int, int>>& positions) {
vector<int> ans;
vector<Interval> intervals;
int maxHeight = INT_MIN;
for (const auto& it : positions) {
int start = it.first;
int end = start + it.second;
int baseHeight = 0;
for (const auto& it : intervals) {
if (start >= it.end || end <= it.start) {
continue;
}
baseHeight = max(baseHeight, it.height);
}
int height = it.second + baseHeight;
maxHeight = max(maxHeight, height);
intervals.push_back(Interval(start, end, height));
ans.push_back(maxHeight);
}
return ans;
}
private:
struct Interval {
int start;
int end;
int height;
Interval(int start, int end, int height)
: start(start), end(end), height(height) {}
};
};
Approach #2: C++. [Using Map]
class Solution {
public:
vector<int> fallingSquares(vector<pair<int, int>>& positions) {
vector<int> ans;
map<pair<int, int>, int> b;
int maxHeight = INT_MIN;
for (const auto& kv : positions) {
int start = kv.first;
int size = kv.second;
int end = start + size;
auto it = b.upper_bound({start, end});
if (it != b.begin()) {
auto it2 = it;
if ((--it2)->first.second > start)
it = it2;
}
int baseHeight = 0;
vector<tuple<int, int, int>> ranges;
while (it != b.end() && it->first.first < end) {
const int s = it->first.first;
const int e = it->first.second;
const int h = it->second;
if (s < start) ranges.emplace_back(s, start, h);
if (e > end) ranges.emplace_back(end, e, h);
baseHeight = max(baseHeight, h);
it = b.erase(it);
}
int newHeight = size + baseHeight;
b[{start, end}] = newHeight;
for (const auto& range : ranges) {
b[{get<0>(range), get<1>(range)}] = get<2>(range);
}
maxHeight = max(maxHeight, newHeight);
ans.push_back(maxHeight);
}
return ans;
}
};
Notes:
Approach #3: Java. [segment tree]
class Solution {
public List<Integer> fallingSquares(int[][] positions) {
int n = positions.length;
Map<Integer, Integer> cc = coorCompression(positions);
int best = 0;
List<Integer> res = new ArrayList<>();
SegmentTree tree = new SegmentTree(cc.size());
for (int[] pos : positions) {
int L = cc.get(pos[0]);
int R = cc.get(pos[0] + pos[1] - 1);
int h = tree.query(L, R) + pos[1];
tree.update(L, R, h);
best = Math.max(best, h);
res.add(best);
}
return res;
}
private Map<Integer, Integer> coorCompression(int[][] positions) {
Set<Integer> set = new HashSet<>();
for (int[] pos : positions) {
set.add(pos[0]);
set.add(pos[0] + pos[1] - 1);
}
List<Integer> list = new ArrayList<>(set);
Collections.sort(list);
Map<Integer, Integer> map = new HashMap<>();
int t = 0;
for (int pos : list) map.put(pos, t++);
return map;
}
class SegmentTree {
int[] tree;
int N;
SegmentTree(int N) {
this.N = N;
int n = (1 << ((int) Math.ceil(Math.log(N) / Math.log(2)) + 1));
tree = new int[n];
}
public int query(int L, int R) {
return queryUtil(1, 0, N - 1, L, R);
}
private int queryUtil(int index, int s, int e, int L, int R) {
// out of range
if (s > e || s > R || e < L) {
return 0;
}
// [L, R] cover [s, e]
if (s >= L && e <= R) {
return tree[index];
}
// Overlapped
int mid = s + (e - s) / 2;
return Math.max(queryUtil(2 * index, s, mid, L, R), queryUtil(2 * index + 1, mid + 1, e, L, R));
}
public void update(int L, int R, int h) {
updateUtil(1, 0, N - 1, L, R, h);
}
private void updateUtil(int index, int s, int e, int L, int R, int h) {
// out of range
if (s > e || s > R || e < L) {
return;
}
tree[index] = Math.max(tree[index], h);
if (s != e) {
int mid = s + (e - s) / 2;
updateUtil(2 * index, s, mid, L, R, h);
updateUtil(2 * index + 1, mid + 1, e, L, R, h);
}
}
}
}
699. Falling Squares的更多相关文章
- 【leetcode】699. Falling Squares
题目如下: On an infinite number line (x-axis), we drop given squares in the order they are given. The i- ...
- leetcode 699. Falling Squares 线段树的实现
线段树实现.很多细节值得品味 都在注释里面了 class SegTree: def __init__(self,N,query_fn,update_fn): self.tree=[0]*(2*N+2) ...
- Falling Squares
2020-01-08 10:16:37 一.Falling squares 问题描述: 问题求解: 本题其实也是一条经典的区间问题,对于区间问题,往往可以使用map来进行区间的维护操作. class ...
- [LeetCode] Falling Squares 下落的方块
On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...
- [Swift]LeetCode699. 掉落的方块 | Falling Squares
On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...
- LeetCode699. Falling Squares
On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
- leetcode 学习心得 (4)
645. Set Mismatch The set S originally contains numbers from 1 to n. But unfortunately, due to the d ...
- All LeetCode Questions List 题目汇总
All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...
随机推荐
- Web框架和Django基础
核心知识点 1.web应用类似于一个socket客户端,用来接收请求 2.HTTP:规定了客户端和服务器之间的通信格式. 3.一个HTTP包含两部分,header和body,body是可选,\r\n分 ...
- 分享知识-快乐自己:MySQL中的约束,添加约束,删除约束,以及一些其他修饰
创建数据库: CREATE DATABASES 数据库名: 选择数据库: USE 数据库名: 删除数据库: DROP DATAVBASE 数据库名: 创建表: CREATE TABLE IF NOT ...
- X-Forward-For ip
用 Firefox 的Moify Headers 插件 服务器重新配置X-Forward-For 为正确的值. 如对典型的nginx + php fastcgi 环境( nginx 与 php fas ...
- 在node.js中建立你的第一个HTTp服务器
这一章节我们将从初学者的角度介绍如何建立一个简单的node.js HTTP 服务器 创建myFirstHTTPServer.js //Lets require/import the HTTP modu ...
- Java集合的有序无序问题和线程安全与否问题
首先,清楚有序和无序是什么意思: 集合的有序.无序是指插入元素时,保持插入的顺序性,也就是先插入的元素优先放入集合的前面部分. 而排序是指插入元素后,集合中的元素是否自动排序.(例如升序排序) 1.有 ...
- T56
警方派人监视那个可疑人的住宅.The police put a watch on the suspect's house.他们利用自己的实践经验,设计了一台气冷柴油机.According their ...
- 机器学习:决策树--python
今天,我们介绍机器学习里比较常用的一种分类算法,决策树.决策树是对人类认知识别的一种模拟,给你一堆看似杂乱无章的数据,如何用尽可能少的特征,对这些数据进行有效的分类. 决策树借助了一种层级分类的概念, ...
- CF Round #459
好菜啊 第一场cf就菜成这样...mdzz 可能是我把题看的太简单了吧... T1AC T2AC T3WA T4看错题 T5不会写 T3想的是栈+暴力 正解: 对于一个pretty串的任意一个位置, ...
- BZOJ3991:寻宝游戏 (LCA+dfs序+树链求并+set)
小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走 ...
- hdu3518 Boring Counting[后缀排序]
裸的统计不同的重复出现子串(不重叠)种数的题.多次使用后缀排序要注意小细节.y数组在重复使用时一定要清空,看那个line25 +k就明白了 ,cnt也要清空,为什么就不说了 #include<b ...