On an infinite number line (x-axis), we drop given squares in the order they are given.

The i-th square dropped (positions[i] = (left, side_length)) is a square with the left-most point being positions[i][0] and sidelength positions[i][1].

The square is dropped with the bottom edge parallel to the number line, and from a higher height than all currently landed squares. We wait for each square to stick before dropping the next.

The squares are infinitely sticky on their bottom edge, and will remain fixed to any positive length surface they touch (either the number line or another square). Squares dropped adjacent to each other will not stick together prematurely.

Return a list ans of heights. Each height ans[i] represents the current highest height of any square we have dropped, after dropping squares represented by positions[0], positions[1], ..., positions[i].

Example 1:

Input: [[1, 2], [2, 3], [6, 1]]
Output: [2, 5, 5]
Explanation:

After the first drop of positions[0] = [1, 2]: _aa _aa ------- The maximum height of any square is 2.

After the second drop of positions[1] = [2, 3]: __aaa __aaa __aaa _aa__ _aa__ -------------- The maximum height of any square is 5. The larger square stays on top of the smaller square despite where its center of gravity is, because squares are infinitely sticky on their bottom edge.

After the third drop of positions[1] = [6, 1]: __aaa __aaa __aaa _aa _aa___a -------------- The maximum height of any square is still 5. Thus, we return an answer of [2, 5, 5].

Example 2:

Input: [[100, 100], [200, 100]]
Output: [100, 100]
Explanation: Adjacent squares don't get stuck prematurely - only their bottom edge can stick to surfaces.

Note:

  • 1 <= positions.length <= 1000.
  • 1 <= positions[i][0] <= 10^8.
  • 1 <= positions[i][1] <= 10^6.

Approach #1: C++. [Brute Force]

class Solution {
public:
vector<int> fallingSquares(vector<pair<int, int>>& positions) {
vector<int> ans;
vector<Interval> intervals;
int maxHeight = INT_MIN;
for (const auto& it : positions) {
int start = it.first;
int end = start + it.second;
int baseHeight = 0;
for (const auto& it : intervals) {
if (start >= it.end || end <= it.start) {
continue;
}
baseHeight = max(baseHeight, it.height);
}
int height = it.second + baseHeight;
maxHeight = max(maxHeight, height);
intervals.push_back(Interval(start, end, height));
ans.push_back(maxHeight);
}
return ans;
} private:
struct Interval {
int start;
int end;
int height;
Interval(int start, int end, int height)
: start(start), end(end), height(height) {}
};
};

  

Approach #2: C++. [Using Map]

class Solution {
public:
vector<int> fallingSquares(vector<pair<int, int>>& positions) {
vector<int> ans;
map<pair<int, int>, int> b;
int maxHeight = INT_MIN;
for (const auto& kv : positions) {
int start = kv.first;
int size = kv.second;
int end = start + size; auto it = b.upper_bound({start, end}); if (it != b.begin()) {
auto it2 = it;
if ((--it2)->first.second > start)
it = it2;
} int baseHeight = 0;
vector<tuple<int, int, int>> ranges; while (it != b.end() && it->first.first < end) {
const int s = it->first.first;
const int e = it->first.second;
const int h = it->second; if (s < start) ranges.emplace_back(s, start, h);
if (e > end) ranges.emplace_back(end, e, h); baseHeight = max(baseHeight, h);
it = b.erase(it);
} int newHeight = size + baseHeight; b[{start, end}] = newHeight; for (const auto& range : ranges) {
b[{get<0>(range), get<1>(range)}] = get<2>(range);
} maxHeight = max(maxHeight, newHeight);
ans.push_back(maxHeight);
}
return ans;
}
};

  

Notes:

1. tuples in c++.

Approach #3: Java. [segment tree]

class Solution {
public List<Integer> fallingSquares(int[][] positions) {
int n = positions.length;
Map<Integer, Integer> cc = coorCompression(positions);
int best = 0;
List<Integer> res = new ArrayList<>();
SegmentTree tree = new SegmentTree(cc.size());
for (int[] pos : positions) {
int L = cc.get(pos[0]);
int R = cc.get(pos[0] + pos[1] - 1);
int h = tree.query(L, R) + pos[1];
tree.update(L, R, h);
best = Math.max(best, h);
res.add(best);
}
return res;
} private Map<Integer, Integer> coorCompression(int[][] positions) {
Set<Integer> set = new HashSet<>();
for (int[] pos : positions) {
set.add(pos[0]);
set.add(pos[0] + pos[1] - 1);
}
List<Integer> list = new ArrayList<>(set);
Collections.sort(list);
Map<Integer, Integer> map = new HashMap<>();
int t = 0;
for (int pos : list) map.put(pos, t++);
return map;
} class SegmentTree {
int[] tree;
int N; SegmentTree(int N) {
this.N = N;
int n = (1 << ((int) Math.ceil(Math.log(N) / Math.log(2)) + 1));
tree = new int[n];
} public int query(int L, int R) {
return queryUtil(1, 0, N - 1, L, R);
} private int queryUtil(int index, int s, int e, int L, int R) {
// out of range
if (s > e || s > R || e < L) {
return 0;
}
// [L, R] cover [s, e]
if (s >= L && e <= R) {
return tree[index];
}
// Overlapped
int mid = s + (e - s) / 2;
return Math.max(queryUtil(2 * index, s, mid, L, R), queryUtil(2 * index + 1, mid + 1, e, L, R));
} public void update(int L, int R, int h) {
updateUtil(1, 0, N - 1, L, R, h);
} private void updateUtil(int index, int s, int e, int L, int R, int h) {
// out of range
if (s > e || s > R || e < L) {
return;
}
tree[index] = Math.max(tree[index], h);
if (s != e) {
int mid = s + (e - s) / 2;
updateUtil(2 * index, s, mid, L, R, h);
updateUtil(2 * index + 1, mid + 1, e, L, R, h);
}
}
}
}

  

699. Falling Squares的更多相关文章

  1. 【leetcode】699. Falling Squares

    题目如下: On an infinite number line (x-axis), we drop given squares in the order they are given. The i- ...

  2. leetcode 699. Falling Squares 线段树的实现

    线段树实现.很多细节值得品味 都在注释里面了 class SegTree: def __init__(self,N,query_fn,update_fn): self.tree=[0]*(2*N+2) ...

  3. Falling Squares

    2020-01-08 10:16:37 一.Falling squares 问题描述: 问题求解: 本题其实也是一条经典的区间问题,对于区间问题,往往可以使用map来进行区间的维护操作. class ...

  4. [LeetCode] Falling Squares 下落的方块

    On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...

  5. [Swift]LeetCode699. 掉落的方块 | Falling Squares

    On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...

  6. LeetCode699. Falling Squares

    On an infinite number line (x-axis), we drop given squares in the order they are given. The i-th squ ...

  7. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  8. leetcode 学习心得 (4)

    645. Set Mismatch The set S originally contains numbers from 1 to n. But unfortunately, due to the d ...

  9. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

随机推荐

  1. OpenCV Machine Learning 之 正态贝叶斯分类器 (Normal Bayes Classifier)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zhjm07054115/article/details/27631913

  2. Java AQS详解(转)

    原文地址 一.概述 谈到并发,不得不谈ReentrantLock:而谈到ReentrantLock,不得不谈AbstractQueuedSynchronizer(AQS)! 类如其名,抽象的队列式的同 ...

  3. SlopeOne推荐算法

           Slope One 算法 是一种基于评分的预测算法, 本质上也是一种基于项目的算法.与一般的基于项目的算法不同, 该算法不计算项目之间的相似度, 而是用一种简单的线性回归模型进行预测(可 ...

  4. Spring Boot2.0之整合log4j

    传统方式打印日志比较复杂, 每次打印需要定义全局变量 private static final Logger logger = LoggerFactory.getLogger(SjpControlle ...

  5. TS流分析

    http://blog.csdn.net/zxh821112/article/details/17587215 一 从TS流开始 数字电视机顶盒接收到的是一段段的码流,我们称之为TS(Transpor ...

  6. Android 4.0 的 GridLayout

    设计素材代码: 1<?xml version="1.0" encoding="utf-8"?> 2<GridLayout//#http://w ...

  7. 关于MVC模板渲染的一点小事type="text/template"

    先上一个demo,简单粗暴,请自便 <!DOCTYPE html> <html> <head lang="en"> <meta chars ...

  8. html5--1.3 元素的概念与3个常用标签

    html5--1.3 元素的概念与3个常用标签 学习要点 1.元素的概念 2.3个常用的标签 HTML 元素指的是从开始标签到结束标签的所有代码. 开始标签 元素内容 结束标签 <h1> ...

  9. eclipse如何在不联网的情况下引入dtd约束文件

    1. 获取dtd文件,解压 F:\Java配置文件\Mybatis\mybatis-3.3.0\mybatis-3.3.0.jar\org\apache\ibatis\builder\xml\ 路径下 ...

  10. storm--chuanzhiboke

    Storm里面有7种类型的stream grouping 1. Shuffle Grouping: 随机分组, 随机派发stream里面的tuple,保证每个bolt接收到的tuple数目大致相同. ...