MongoDB索引原理
转自:http://www.mongoing.com/archives/2797
为什么需要索引?
当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql)。
mongo-9552:PRIMARY> db.person.find()
{ "_id" : ObjectId("571b5da31b0d530a03b3ce82"), "name" : "jack", "age" : 19 }
{ "_id" : ObjectId("571b5dae1b0d530a03b3ce83"), "name" : "rose", "age" : 20 }
{ "_id" : ObjectId("571b5db81b0d530a03b3ce84"), "name" : "jack", "age" : 18 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce85"), "name" : "tony", "age" : 21 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce86"), "name" : "adam", "age" : 18 }
当你往某各个集合插入多个文档后,每个文档在经过底层的存储引擎持久化后,会有一个位置信息,通过这个位置信息,就能从存储引擎里读出该文档。比如mmapv1引擎里,位置信息是『文件id + 文件内offset 』
, 在wiredtiger存储引擎(一个KV存储引擎)里,位置信息是wiredtiger在存储文档时生成的一个key,通过这个key能访问到对应的文档;为方便介绍,统一用pos(position的缩写)
来代表位置信息。
比如上面的例子里,person
集合里包含插入了4个文档,假设其存储后位置信息如下(为方便描述,文档省去_id字段)
位置信息 | 文档 |
---|---|
pos1 | {“name” : “jack”, “age” : 19 } |
pos2 | {“name” : “rose”, “age” : 20 } |
pos3 | {“name” : “jack”, “age” : 18 } |
pos4 | {“name” : “tony”, “age” : 21} |
pos5 | {“name” : “adam”, “age” : 18} |
假设现在有个查询 db.person.find( {age: 18} )
, 查询所有年龄为18岁的人,这时需要遍历所有的文档(『全表扫描』),根据位置信息读出文档,对比age字段是否为18。当然如果只有4个文档,全表扫描的开销并不大,但如果集合文档数量到百万、甚至千万上亿的时候,对集合进行全表扫描开销是非常大的,一个查询耗费数十秒甚至几分钟都有可能。
如果想加速 db.person.find( {age: 18} )
,就可以考虑对person表的age字段建立索引。
db.person.createIndex( {age: 1} ) // 按age字段创建升序索引
建立索引后,MongoDB会额外存储一份按age字段升序排序的索引数据,索引结构类似如下,索引通常采用类似btree的结构持久化存储,以保证从索引里快速(O(logN)的时间复杂度
)找出某个age值对应的位置信息,然后根据位置信息就能读取出对应的文档。
AGE | 位置信息 |
---|---|
18 | pos3 |
18 | pos5 |
19 | pos1 |
20 | pos2 |
21 | pos4 |
简单的说,索引就是将文档
按照某个(或某些)字段顺序组织起来,以便能根据该字段高效的查询。有了索引,至少能优化如下场景的效率:
- 查询,比如查询年龄为18的所有人
- 更新/删除,将年龄为18的所有人的信息更新或删除,因为更新或删除时,需要根据条件先查询出所有符合条件的文档,所以本质上还是在优化查询
- 排序,将所有人的信息按年龄排序,如果没有索引,需要全表扫描文档,然后再对扫描的结果进行排序
众所周知,MongoDB默认会为插入的文档生成_id字段(如果应用本身没有指定该字段),_id是文档唯一的标识,为了保证能根据文档id快递查询文档,MongoDB默认会为集合创建_id字段的索引。
mongo-9552:PRIMARY> db.person.getIndexes() // 查询集合的索引信息
[
{
"ns" : "test.person", // 集合名
"v" : 1, // 索引版本
"key" : { // 索引的字段及排序方向
"_id" : 1 // 根据_id字段升序索引
},
"name" : "_id_" // 索引的名称
}
]
MongoDB索引类型
MongoDB支持多种类型的索引,包括单字段索引、复合索引、多key索引、文本索引等,每种类型的索引有不同的使用场合。
单字段索引 (Single Field Index)
db.person.createIndex( {age: 1} )
上述索引对应的数据组织类似下表,与{age: 1}索引不同的时,当age字段相同时,在根据name字段进行排序,所以pos5对应的文档排在pos3之前。
AGE,NAME | 位置信息 |
---|---|
18,adam | pos5 |
18,jack | pos3 |
19,jack | pos1 |
20,rose | pos2 |
21,tony | pos4 |
复合索引能满足的查询场景比单字段索引更丰富,不光能满足多个字段组合起来的查询,比如db.person.find( {age: 18, name: "jack"} )
,也能满足所以能匹配符合索引前缀的查询,这里{age: 1}即为{age: 1, name: 1}的前缀,所以类似db.person.find( {age: 18} )
的查询也能通过该索引来加速;但db.person.find( {name: "jack"} )
则无法使用该复合索引。如果经常需要根据『name字段』以及『name和age字段组合』来查询,则应该创建如下的复合索引
db.person.createIndex( {name: 1, age: 1} )
除了查询的需求能够影响索引的顺序,字段的值分布也是一个重要的考量因素,即使person集合所有的查询都是『name和age字段组合』(指定特定的name和age),字段的顺序也是有影响的。
age字段的取值很有限,即拥有相同age字段的文档会有很多;而name字段的取值则丰富很多,拥有相同name字段的文档很少;显然先按name字段查找,再在相同name的文档里查找age字段更为高效。
多key索引 (Multikey Index)
当索引的字段为数组时,创建出的索引称为多key索引,多key索引会为数组的每个元素建立一条索引,比如person表加入一个habbit字段(数组)用于描述兴趣爱好,需要查询有相同兴趣爱好的人就可以利用habbit字段的多key索引。
{"name" : "jack", "age" : 19, habbit: ["football, runnning"]}
db.person.createIndex( {habbit: 1} ) // 自动创建多key索引
db.person.find( {habbit: "football"} )
其他类型索引
哈希索引(Hashed Index)是指按照某个字段的hash值来建立索引,目前主要用于MongoDB Sharded Cluster的Hash分片,hash索引只能满足字段完全匹配的查询,不能满足范围查询等。
地理位置索引(Geospatial Index)能很好的解决O2O的应用场景,比如『查找附近的美食』、『查找某个区域内的车站』等。
文本索引(Text Index)能解决快速文本查找的需求,比如有一个博客文章集合,需要根据博客的内容来快速查找,则可以针对博客内容建立文本索引。
索引额外属性
MongoDB除了支持多种不同类型的索引,还能对索引定制一些特殊的属性。
- 唯一索引 (unique index):保证索引对应的字段不会出现相同的值,比如_id索引就是唯一索引
- TTL索引:可以针对某个时间字段,指定文档的过期时间(经过指定时间后过期 或 在某个时间点过期)
- 部分索引 (partial index): 只针对符合某个特定条件的文档建立索引,3.2版本才支持该特性
- 稀疏索引(sparse index): 只针对存在索引字段的文档建立索引,可看做是部分索引的一种特殊情况
索引优化
db profiling
MongoDB支持对DB的请求进行profiling,目前支持3种级别的profiling。
- 0: 不开启profiling
- 1: 将处理时间超过某个阈值(默认100ms)的请求都记录到DB下的system.profile集合 (类似于mysql、redis的slowlog)
- 2: 将所有的请求都记录到DB下的system.profile集合(生产环境慎用)
通常,生产环境建议使用1级别的profiling,并根据自身需求配置合理的阈值,用于监测慢请求的情况,并及时的做索引优化。
如果能在集合创建的时候就能『根据业务查询需求决定应该创建哪些索引』,当然是最佳的选择;但由于业务需求多变,要根据实际情况不断的进行优化。索引并不是越多越好,集合的索引太多,会影响写入、更新的性能,每次写入都需要更新所有索引的数据;所以你system.profile里的慢请求可能是索引建立的不够导致,也可能是索引过多导致。
查询计划
索引已经建立了,但查询还是很慢怎么破?这时就得深入的分析下索引的使用情况了,可通过查看下详细的查询计划来决定如何优化。通过执行计划可以看出如下问题
- 根据某个/些字段查询,但没有建立索引
- 根据某个/些字段查询,但建立了多个索引,执行查询时没有使用预期的索引。
建立索引前,db.person.find( {age: 18} )
必须执行COLLSCAN,即全表扫描。
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "COLLSCAN",
"filter" : {
"age" : {
"$eq" : 18
}
},
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
建立索引后,通过查询计划可以看出,先进行[IXSCAN]((https://docs.mongodb.org/manual/reference/explain-results/#queryplanner)(从索引中查找),然后FETCH,读取出满足条件的文档。
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"age" : 1
},
"indexName" : "age_1",
"isMultiKey" : false,
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "forward",
"indexBounds" : {
"age" : [
"[18.0, 18.0]"
]
}
}
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
参考资料
- MongoDB索引介绍
- createIndex命令
- MongoDB Sharded Cluster
- 唯一索引 (unique index)
- TTL索引
- 部分索引 (partial index)
- 稀疏索引(sparse index)
- database profiling
MongoDB索引原理的更多相关文章
- MongoDB · 引擎特性 · MongoDB索引原理
MongoDB · 引擎特性 · MongoDB索引原理数据库内核月报原文链接 http://mysql.taobao.org/monthly/2018/09/06/ 为什么需要索引?当你抱怨Mong ...
- mongodb的索引原理
首先说一下为什么要有索引,大家都知道mongdb是非关系型文档类型数据库,用过的人都有同一种感受,查询的效率太低,当你想提高查询效率的时候可以就需要使用索引了. 哈哈,本来想写一篇的,在网上看到了一篇 ...
- MongoDB索引介绍
MongoDB中的索引其实类似于关系型数据库,都是为了提高查询和排序的效率的,并且实现原理也基本一致.由于集合中的键(字段)可以是普通数据类型,也可以是子文档.MongoDB可以在各种类型的键上创建索 ...
- MongoDB索引(一) --- 入门篇:学习使用MongoDB数据库索引
这个系列文章会分为两篇来写: 第一篇:入门篇,学习使用MongoDB数据库索引 第二篇:进阶篇,研究数据库索引原理--B/B+树的基本原理 1. 准备工作 在学习使用MongoDB数据库索引之前,有一 ...
- MySQL的InnoDB索引原理详解
摘要 本篇介绍下Mysql的InnoDB索引相关知识,从各种树到索引原理到存储的细节. InnoDB是Mysql的默认存储引擎(Mysql5.5.5之前是MyISAM,文档).本着高效学习的目的,本篇 ...
- MySQL索引原理及慢查询优化
原文:http://tech.meituan.com/mysql-index.html 一个慢查询引发的思考 select count(*) from task where status=2 and ...
- SQL Server2014 哈希索引原理
SQL Server2014 哈希索引原理 翻译自:http://www.sqlservercentral.com/blogs/sql-and-sql-only/2015/09/08/hekaton- ...
- (转)MySQL索引原理及慢查询优化
转自美团技术博客,原文地址:http://tech.meituan.com/mysql-index.html 建索引的一些原则: 1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到 ...
- [DataBase] MongoDB (7) MongoDB 索引
MongoDB 索引 1. 建立索引 唯一索引db.passport.ensureIndex( {"loginname": 1}, {"unique": tru ...
随机推荐
- 让你看不懂的swift语法
一.Swift杂谈 Swift语法出来时间不长,网络上的各种教程已经铺天盖地,可是基本上全部的教程都是来自官方翻译. 从Swift出来到如今.每天都在学习Swift.以下给出个人感受 Swift中的非 ...
- Asp.Net 之 前台绑定常用总结
1.<%= 变量名 %> 里面放的是后台定义的变量名,如: <div> <p> <%= DateTime.Now.ToString() %></p ...
- iOS——Quartz2D
0. 复习. 1.基本图形绘制 * 线段(线宽.线段样式) * 矩形(空心.实心.颜色) * 三角形.四边形等形状 1> 说明 - (void)drawRect:(CGRect)rect 什么时 ...
- Java 类型, Hibernate 映射类型及 SQL 类型之间的相应关系
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/ ...
- Linux库的创建和使用
Linux库的概念 库是一种软件组建技术,里面封装了数据和函数,提供给用户程序调用.使用库能够使程序模块化,提高编译速度,实现代码重用,易于升级. Windows系统提供了大量静态链接库(.lib)和 ...
- linux远程
apt-get install rdesktop $rdesktop -u administrator -p ****** -a 16 192.168.1.1 //都直接登陆了,
- Ubuntu 12.04解决重启后resolv.conf清空的问题
这跟以前用RHT系的 情况是完全不一样的: 在google上搜了一下,发现这里面还真有些奥妙: 1 /etc/resolv.conf 其实是一个Link 它其实指向的是 /run/resolvconf ...
- opencv实现gamma灰阶检測
简单介绍 本篇解说使用opencv来測试,表示camera gamma參数的灰阶卡图片指标:YA Block.DynamicRange.Gray Scale. 详细实现 实现代码 #include & ...
- JS禁止后退键(backspace)使浏览器后退
背景说明: 今天项目测试中,同事发现一个Bug,当键盘敲下后退键(Backspace)后,浏览器自动后退,不符合需求,故建议禁止浏览器后退键. 提出需求: 当键盘敲下后退键(Backspace)后 1 ...
- webservice系统学习笔记7-使用handler实现过滤器/拦截器效果
handler可以作用于客户端,也可以作用了服务端 handler分为:1.LogicalHandler:只能获取到soap消息的body. 2.SOAPHandler:可以获取SOAPMessage ...