python——type()、metaclass元类和精简ORM框架
1、type()函数
if __name__ == '__main__':
h = hello()
h.hello()
print(type(hello))
print(type(h))
Hello, world.
<class 'type'>
<class '__main__.Hello'>
2、metaclass元类
#metaclass 元类 metaclass允许你创建类或者修改类
class Listmetaclass(type):
def __new__(cls, name,bases,attrs):
attrs['add'] = lambda self,value:self.append(value) #增加了add()方法
return type.__new__(cls,name,bases,attrs)
class MyList(list,metaclass=Listmetaclass):
pass
#__new__()方法接收到的参数依次是: #1、当前准备创建的类的对象;
#2、类的名字;
#3、类继承的父类集合;
#4、类的方法集合。 #元类一般情况不常用,但总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。
#ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,
# 也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。
#要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。
3、精简ORM框架
#开始编写ORM框架
class Field(object):
def __init__(self,name,column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '<%s:%s>'%(self.__class__.__name__,self.name) class StringField(Field):
def __init__(self,name):
super(StringField,self).__init__(name,'varchar(100)') class IntegerField(Field):
def __init__(self,name):
super(IntegerField,self).__init__(name,'bigint')
#下一步,就是编写最复杂的ModelMetaclass了:
class ModelMetaclass(type):
def __new__(cls, name,bases,attrs):
if name == 'Model': #排除掉对Model类的修改;
return type.__new__(cls,name,bases,attrs)
print('Found Model: %s'%name)
mappings = dict()
for k,v in attrs.items(): #查找定义的类的所有属性,
if isinstance(v,Field): #如果找到一个Field属性,
print('Found mapping: %s ==> %s' % (k, v))
mappings[k] = v #就把它保存到一个__mappings__的dict中
for k in mappings.keys():
attrs.pop(k) #同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
attrs['__table__'] = name # 假设表名和类名一致 把表名保存到__table__中
return type.__new__(cls,name,bases,attrs) #基类Model
class Model(dict,metaclass=ModelMetaclass):
def __init__(self,**kw):
super(Model,self).__init__(**kw)
def __getattr__(self, item): #没有找到的属性,就在这里找
try:
return self[item]
except KeyError:
raise AttributeError(r"'Model' object has no attrs :'%s'"%item) def __setattr__(self, key, value):
self[key] = value def save(self):
fields = []
params = []
args = []
for k,v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self,k,None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args)) #子类User
# 定义类的属性到列的映射:
class User(Model):
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
age = IntegerField('age') #开始编写ORM框架
class Field(object):
def __init__(self,name,column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '<%s:%s>'%(self.__class__.__name__,self.name) class StringField(Field):
def __init__(self,name):
super(StringField,self).__init__(name,'varchar(100)') class IntegerField(Field):
def __init__(self,name):
super(IntegerField,self).__init__(name,'bigint')
#下一步,就是编写最复杂的ModelMetaclass了:
class ModelMetaclass(type):
def __new__(cls, name,bases,attrs):
if name == 'Model': #排除掉对Model类的修改;
return type.__new__(cls,name,bases,attrs)
print('Found Model: %s'%name)
mappings = dict()
for k,v in attrs.items(): #查找定义的类的所有属性,
if isinstance(v,Field): #如果找到一个Field属性,
print('Found mapping: %s ==> %s' % (k, v))
mappings[k] = v #就把它保存到一个__mappings__的dict中
for k in mappings.keys():
attrs.pop(k) #同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
attrs['__table__'] = name # 假设表名和类名一致 把表名保存到__table__中
return type.__new__(cls,name,bases,attrs) #基类Model
class Model(dict,metaclass=ModelMetaclass):
def __init__(self,**kw):
super(Model,self).__init__(**kw)
def __getattr__(self, item): #没有找到的属性,就在这里找
try:
return self[item]
except KeyError:
raise AttributeError(r"'Model' object has no attrs :'%s'"%item) def __setattr__(self, key, value):
self[key] = value def save(self):
fields = []
params = []
args = []
for k,v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self,k,None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args)) #子类User
# 定义类的属性到列的映射:
class User(Model):
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
age = IntegerField('age')
当用户定义一个class User(Model)
时,Python解释器首先在当前类User
的定义中查找metaclass
,如果没有找到,就继续在父类Model
中查找metaclass
,找到了,就使用Model
中定义的metaclass
的ModelMetaclass
来创建User
类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。
在ModelMetaclass
中,一共做了几件事情:
排除掉对
Model
类的修改;在当前类(比如
User
)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__
的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);把表名保存到
__table__
中,这里简化为表名默认为类名。
在Model
类中,就可以定义各种操作数据库的方法,比如save()
,delete()
,find()
,update
等等。
我们实现了save()
方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT
语句。
编写代码试试:
if __name__ == '__main__':
u = User(id = 12345,name = 'john',email = '123456789@qq.com',password = '666666')
u.age = 12
u.save()
Found Model: User
Found mapping: id ==> <IntegerField:id>
Found mapping: name ==> <StringField:username>
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: age ==> <IntegerField:age>
SQL: insert into User (id,username,email,password,age) values (?,?,?,?,?)
ARGS: [12345, 'john', '123456789@qq.com', '666666', 12]
即User类中做好了到列的映射的类属性,都能添加到sql语句中,而未做好了到列的映射的类属性:如height,则会过滤掉,实现数据库列的字段的高度可定制
save()
方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。下面入库操作,还有剩下的删改查操作可自行解决。python——type()、metaclass元类和精简ORM框架的更多相关文章
- Python元类实战,通过元类实现数据库ORM框架
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Python专题的第19篇文章,我们一起来用元类实现一个简易的ORM数据库框架. 本文主要是受到了廖雪峰老师Python3入门教程的启 ...
- [转]深刻理解Python中的元类(metaclass)以及元类实现单例模式
使用元类 深刻理解Python中的元类(metaclass)以及元类实现单例模式 在看一些框架源代码的过程中碰到很多元类的实例,看起来很吃力很晦涩:在看python cookbook中关于元类创建单例 ...
- 深刻理解Python中的元类(metaclass)以及元类实现单例模式
在理解元类之前,你需要先掌握Python中的类.Python中类的概念借鉴于Smalltalk,这显得有些奇特.在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段.在Python中这一点仍 ...
- Python中的元类(metaclass)
推荐+收藏:深刻理解Python中的元类(metaclass) 做一些笔记学习学习: 在大多数编程语言中,类就是用来描述如何生成一个对象的代码段,在Python中类也是一个对象,这个(类)对象自身拥有 ...
- Python面向对象06 /元类type、反射、函数与类的区别、特殊的双下方法
Python面向对象06 /元类type.反射.函数与类的区别.特殊的双下方法 目录 Python面向对象06 /元类type.反射.函数与类的区别.特殊的双下方法 1. 元类type 2. 反射 3 ...
- python基础——使用元类
python基础——使用元类 type() 动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的. 比方说我们要定义一个Hello的class,就写一个hello. ...
- Python 中的元类到底是什么?这篇恐怕是最清楚的了
类作为对象 在理解元类之前,您需要掌握 Python 的类.Python 从 Smalltalk 语言中借用了一个非常特殊的类概念. 在大多数语言中,类只是描述如何产生对象的代码段.在 Python ...
- Python基础:元类
一.概述 二.经典阐述 三.核心总结 1.类的创建过程 2.元类的使用惯例 四.简单案例 1.默认行为 2.使用元类 五.实践为王 一.概述 Python虽然是多范式的编程语言,但它的数据模型却是 纯 ...
- python中面向对象元类的自定义用法
面向对象中的常用方法 1.instance 和 issubclass instance :判断两个对象是不是一类 issubclass :判断某个类是不是另一个类的子类 #两个常用方法的使用 clas ...
随机推荐
- TeamWork#3,Week5,Bing Input Method vs Sogou Input Method
现在电脑上用五笔的用户越来越少了,好的拼音输入法也是难求.必应输入法的前身英库拼音输入法来自微软亚洲研究院的多项基础研究成果.最新的必应输入法不仅保留了英库拼音输入法的各项优势,还结合了必应的搜索体验 ...
- web02-welcomeyou
新建web项目web02-welcomeyou, 修改index.jsp为 <body> This is my JSP page. <br> <form action=& ...
- Chapter 4 需求工程
软件需求是用户解决问题或达到目的所需的条件或能力,以及系统或系统部件要满足合同.标准.规范或其他正式规定文档所需要的条件和能力.软件需求可以划分为业务需求.用户需求.系统需求.功能需求和非功能需求等类 ...
- php----函数大全
字符串函数 数组函数 数学函数
- ssh框架配置数据源 数据库连接没有正常释放
通过多天的改bug 对数据源这个东西了解多了.. 我发现 spring+hibernate下 申请数据库连接是在一个action方法内 也就是说 action 里面有三个 service方 ...
- 团队作业7——第二次项目冲刺(Beta版本12.09——12.10)
1.当天站立式会议照片 本次会议在5号公寓3楼召开,本次会议内容:①:熟悉每个人想做的模块.②:根据项目要求还没做的完成. 2.每个人的工作 经过会议讨论后确定了每个人的分工 组员 任务 陈福鹏 倒计 ...
- 05_Java基础语法_第5天(方法)_讲义
今日内容介绍 1.方法基础知识 2.方法高级内容 3.方法案例 01方法的概述 * A: 为什么要有方法 * 提高代码的复用性 * B: 什么是方法 * 完成特定功能的代码块. 02方法的定义格式 * ...
- Express搭建NodeJS项目
1.安装Node.js: 2.安装npm; 3.安装Express; 在本例中默认全局安装express 安装express生成器 如果没有安装express-generator或安装路径不对,会报以 ...
- 【最简单】不用ps也可以批量转换图片格式
不废话直接开始~ 1.新建文件夹,把需要转换的图片放进去,如图: 2.文件夹里建一txt文本,重点来了!txt文本的内容,如果是jpg转为png,则输入“ren *.jpg *.png”,同理png转 ...
- Delphi 使用TAdoQuery执行存储过程的样例
procedure TCustomerForm.FindCustomerInfo;var strSql:string;begin // BL_HV_FindCustomerInfo 存储过程的名称 ...