【BZOJ1053】[HAOI2007]反素数

题面

bzoj

洛谷

题解

可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个

可以枚举所有的质因数来求反素数,但还是跑不过

我们又想,质因数不可能太大

而\(37\)内素数相乘已经大于\(2*10^9\)了

所以枚举到\(37\)就可以了

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int N;
int prime[12] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
int ans = 2e9 + 1, tot;
void dfs(int x, int sum, int num) {
if (x == 12) {
if (num > tot) ans = sum, tot = num;
else if (num == tot) ans = min(ans, sum);
return ;
} else {
long long res = 1, cnt = 1;
while (1) {
if (1ll * sum * res > 1ll * N) break;
dfs(x + 1, sum * res, num * cnt);
++cnt; res *= prime[x];
}
}
}
int main () {
cin >> N;
dfs(0, 1, 1);
cout << ans << endl;
return 0;
}

【BZOJ1053】[HAOI2007]反素数的更多相关文章

  1. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  2. BZOJ1053 [HAOI2007]反素数ant 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...

  3. BZOJ1053 [HAOI2007]反素数 & BZOJ3085 反质数加强版SAPGAP

    BZOJ 1053 Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x ...

  4. [BZOJ1053] [HAOI2007] 反素数ant (搜索)

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

  5. BZOJ1053: [HAOI2007]反素数ant(爆搜)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4163  Solved: 2485[Submit][Status][Discuss] Descript ...

  6. bzoj千题计划296:bzoj1053: [HAOI2007]反素数ant

    http://www.lydsy.com/JudgeOnline/problem.php?id=1053 求n以内约数个数最多的数 #include<cstdio> using names ...

  7. 【BZOJ1053】[HAOI2007]反素数(搜索)

    [BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...

  8. 【BZOJ1053】[HAOI2007]反素数ant 暴力

    [BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...

  9. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

随机推荐

  1. ffemp语音转码

    分享一款windows上很不错的  程序员专业转码软件 ffemp 首先先下载ffemp转码软件 https://pan.baidu.com/s/10BoahyWJlI9e-_rB_yCiLA 下载之 ...

  2. iOS开发中常用的数学函数

    iOS开发中常用的数学函数 /*---- 常用数学公式 ----*/ //指数运算 3^2 3^3 NSLog(,)); //result 9 NSLog(,)); //result 27 //开平方 ...

  3. swift关于UIView设置frame值的extension

    swift关于UIView设置frame值的extension 使用 说明 1. 使用如上图,很简单,不再赘述 2. 在extension给添加的计算属性提供getter,setter方法即可 源码 ...

  4. django中session的存储位置

    django-session 存放位置 设置session的保存位置,有三种方法: 保存在关系数据库(db) 保存在缓存数据库(cache) 或者 关系+缓存数据库(cache_db) 保存在文件系统 ...

  5. U-Mail详解邮件营销优势及应用领域

    最近频频有营销人员向U-Mail小编咨询:邮件营销到底有什么好处呢?与此同时,还有不少人对邮件营销存在一定的误解:邮件营销是不是只给潜在消费者发送邮件推广商品呢?其实邮件群发的应用面非常广泛,可不仅仅 ...

  6. debian 7 终端上无法调出输出法

    debian 7 终端konsole上无法调出输出法,无法输入汉字的问题解决方案, export GTK_IM_MODULE=fcitxexport QT_IM_MODULE=fcitxexport ...

  7. 按要求分解字符串,输入两个数M,N;M代表输入的M串字符串,N代表输出的每串字符串的位数,不够补0。例如:输入2,8, “abc” ,“123456789”,则输出为“abc00000”,“12345678“,”90000000”

    import java.util.ArrayList; import java.util.Scanner; public class Text { @SuppressWarnings("re ...

  8. 自定义ClassLoader

    自定义classloader MapleClassLoader package com.maple; import java.io.*; public class MapleClassLoader e ...

  9. 【洛谷】【lca+结论】P3398 仓鼠找sugar

    [题目描述:] 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室 ...

  10. Oracle Listener

    一.监听器功能 1)监听客户端请求:监听器作为独立进程运行在数据库服务器上,监听特定网络端口(默认1521)服务请求. 2)为客户端请求分配oracle Server Process:监听器不直接处理 ...