机器学习 数据预处理之独热编码(One-Hot Encoding)
问题由来
在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。
例如,考虑一下的三个特征:
["male", "female"]
["from Europe", "from US", "from Asia"]
["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]
如果将上述特征用数字表示,效率会高很多。例如:
["male", "from US", "uses Internet Explorer"] 表示为[0, 1, 3]
["female", "from Asia", "uses Chrome"]表示为[1, 2, 1]
但是,即使转化为数字表示后,上述数据也不能直接用在我们的分类器中。因为,分类器往往默认数据数据是连续的,并且是有序的。但是,按照我们上述的表示,数字并不是有序的,而是随机分配的。
独热编码
为了解决上述问题,其中一种可能的解决方法是采用独热编码(One-Hot Encoding)。
独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。
例如:
自然状态码为:000,001,010,011,100,101
独热编码为:000001,000010,000100,001000,010000,100000
可以这样理解,对于每一个特征,如果它有m个可能值,那么经过独热编码后,就变成了m个二元特征。并且,这些特征互斥,每次只有一个激活。因此,数据会变成稀疏的。
这样做的好处主要有:
解决了分类器不好处理属性数据的问题
在一定程度上也起到了扩充特征的作用
举例
我们基于Python和Scikit-learn写一个简单的例子:
from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
enc.transform([[0, 1, 3]]).toarray()
输出结果:
array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
机器学习 数据预处理之独热编码(One-Hot Encoding)的更多相关文章
- 机器学习实战:数据预处理之独热编码(One-Hot Encoding)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 【转】数据预处理之独热编码(One-Hot Encoding)
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...
- 数据预处理:独热编码(One-Hot Encoding)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码
一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...
- 数据预处理之独热编码(One-Hot Encoding)(转载)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 数据预处理之独热编码(One-Hot Encoding)
问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...
- 机器学习:数据预处理之独热编码(One-Hot)
前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...
- Scikit-learn库中的数据预处理:独热编码(二)
在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为 ...
- 数据预处理之独热编码(One-Hot):为什么要使用one-hot编码?
一.问题由来 最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下: 在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值.如下: ...
随机推荐
- 【Web缓存机制系列】2 – Web浏览器的缓存机制
Web缓存的工作原理 所有的缓存都是基于一套规则来帮助他们决定什么时候使用缓存中的副本提供服务(假设有副本可用的情况下,未被销毁回收或者未被删除修改).这些规则有的在协议中有定义(如HTTP协议1.0 ...
- mongodb根据子项中的指标查找最小或最大值
假设students集合中有这样的数据: { "_id" : 1, "name" : "Aurelia Menendez", "s ...
- C# split分割多个字符
string[] myAgent = agentInfo.Split(new string[] { "$#$" }, StringSplitOptions.None);
- Partial Tree(DP)
Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...
- 非换行空白:non-breaking space
一 维基百科(英文版)词条 In word processing and digital typesetting, a non-breaking space (" ") (also ...
- Winform关于OpenFileDialog的使用方法
1.OpenFileDialog控件有以下基本属性InitialDirectory 对话框的初始目录Filter 要在对话框中显示的文件筛选器,例如,"文本文件(*.txt)|*.txt|所 ...
- Swift 项目中可能用到的第三方框架
这里记录下swift开发中可能用的框架 , 最近浏览了不少,积累在这里,以后用的时候方便查阅.顺便推荐给大家! 这里的框架都是纯swift的 , 感谢开源 ,感谢大神们 . 下拉刷新 BreakOut ...
- 零基础学习hadoop到上手工作线路指导(编程篇)
问题导读: 1.hadoop编程需要哪些基础? 2.hadoop编程需要注意哪些问题? 3.如何创建mapreduce程序及其包含几部分? 4.如何远程连接eclipse,可能会遇到什么问题? 5.如 ...
- Combobox实现多项选择 Silverlight下“Combobox”怎样实现多项选择?
把 combobox里面的项换成checkedbox 示例: combobox cbb=new combobox(); ) { CheckBox cb = new CheckBox(); cb.Com ...
- WCF的例子
Demo的 “Service端”以本机IIS为宿主,“Client端”以WebForm项目为例. 1.新建项目:WCF>WCF Service Application: 2.删除默认文件ISer ...