数组篇

2.1 求最小的k个数:

题目描述:有n个整数,请找出其中最小的k个数,要求时间复杂度尽可能低。


解法一:

思路:快排后输出前k个元素,O(nlogn).

writer: zzq

function: 给定一个数组,寻找数组中最小的k个数。

方法一: 先对数组进行排序(快排), 然后选择前k个数。

快排思想: 分治挖坑

挖坑:

1) 先找到一个基准值a[i],存到key里面,然后把a[i]挖空;

2) 从j开始往前找(j--),找到第一个比key小的数,就用当前的a[j]来填补之前的a[i],把a[j]挖空;

3) 从i开始往后找(i++),找到第一个比key大的数,就用当前的a[i]来填补上面的a[i],再把a[i]挖空;

4) 如此循环,直到i==j;

5)然后把key中的值存到a[i]中。【此时,key前面的数都比key小,key后面的数都比key大】e.g.--------------,key,-----------------

分治:

以基准值key所在的位置作为划分点,

quicksort(*a,left,i-1) ;

quicksort(*a,i+1,right);

时间复杂度:排序O(nlogn) + 输出前k个元素O(k), k远小于n时,复杂度为O(nlogn)



#include<iostream>
#include<algorithm>
#include<string>
#include<stdio.h>
using namespace std; void QuickSort(int *a, int start, int end){
if(start<end){
//***************挖坑********************//
int i = start;
int j = end;
int key = *(a+start); // 用key来存中间阈值
// cout<<key<<endl;
while(i<j){ while(i<j&&*(a+j)>key)j--;// 从后往前找比key小的第一个元素
if(i<j){
*(a+i)=*(a+j);
i++;// 为什么只给i++,j的值不变呢,因为要记录当前的挖坑位置,下一次借助这个索引值来填坑。
}
while(i<j&&*(a+i)<key)i++;
if(i<j){
*(a+j)=*(a+i);
j--;
}
}
*(a+i)=key; // 将key填充到最终的坑中,此时满足key前面的元素逗比key小,key后面的元素都比key大。
//******************分治*****************//
QuickSort(a, start, i-1); // 左半部分
QuickSort(a, i+1 , end); // 右半部分
} } int main(){
int n,k;
cin>>n>>k;
int a[n];
for (int i=0;i<n;i++)cin>>a[i];
//int a[]= {72,6,57,88,60,42,83,73,48,85};
QuickSort(a,0,n-1);
for(int j=0;j<k;j++)cout<<a[j]<<' ';
return 0;
}

解法二:

思路:局部排序后输出k个元素,O(nk).

writer: zzq

function: 给定一个数组,寻找数组中最小的k个数。

方法二: 题目没有要求找到的k个最小数必须有序,也没有要求后面的n-k个数有序。

所以不必对整个数组进行排序,只需要对k个数部分排序即可。

1)顺序遍历数组a的前k个元素,保存在数组minK中;

2)选择排序|快速排序找出最大值kmax;

3)顺序遍历后面的n-k个数,如果比kmax大,则index++;否则用当前a[index]代替kmax,并重新对数组minK排序;

4)那么minK中保存的即为最小的k个数。

时间复杂度:(n-k)O(k)+O(k), k远小于n时, O(nk)

【 找minK中的最大值需要遍历k个元素:O(k);

每次更新or not;O(k)|0,共有n-k个待遍历元素, 所以为(n-k)O(k);

输出minK中的k个数:O(k)。


#include<iostream>
#include<algorithm>
#include<stdio.h>
using namespace std; void GetMaxK(int *a,int length, int* KM){
int maxK=*a;
int index = 0;
for(int i=1;i<length;i++){
if(maxK<*(a+i)){
maxK=*(a+i);
index=i;
}
}
*KM=maxK;
*(KM+1)=index;
} int main(){
int n,k;
int KM[2];
cin>>n>>k;
int a[n],minK[k];
for(int i=0;i<n;i++){
cin>>a[i];
if(i<k)minK[i]=a[i];
}
GetMaxK(minK,k,KM);
for(int i=k;i<n;i++){
if(*KM>a[i]){ // a[i]比maxK小,替换该元素,重新求maxK
minK[*(KM+1)]=a[i];
GetMaxK(minK,k,KM);
}
}
for(int j=0;j<k;j++){
if(j+1==k)
cout<<minK[j]<<endl;
else
cout<<minK[j]<<' ';
}
return 0;
}

解法三:

思路:构建前k个数的大顶堆,每次跟新推后输出k个元素,O(nlogk).

writer: zzq

function: 给定一个数组,寻找数组中最小的k个数。

方法三: 利用堆代替数组。

1)用容量为k的最大堆minHk存储最先遍历到的k个数。建堆时间O(k),建好堆后,堆中元素有序,设minH1<minH2<···<minHk;

2)遍历剩余的n-k个元素,与堆顶元素hk比较,如果当前a[index]>minHk,则不做操作,否则用a[index]替换minHk,然后更新堆,

更新堆的时间为O(logk)

3)输出堆中元素即为所求。

时间复杂度:(n-k)O(logk)+O(k), k远小于n时, O(nlogk)

【 建堆:O(k);

更新堆:O(logk);[类似方法二,这是用堆代替数组以后,每次更新堆时间复杂度降低,因为堆是局部有序的]

每次更新or not;O(logk)|0,共有n-k个待遍历元素, 所以为(n-k)O(logk);

输出minK中的k个数:O(k)。】


   堆: 特殊的二叉树。
堆是具有以下性质的完全二叉树:
每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;
或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
用数组实现,则结构描述为:
小顶堆:a[i]<=a[2*i+1]&&a[i]<=a[2*i+2];
大顶堆:a[i]>=a[2*i+1]&&a[i]>=a[2*i+2];


#include<iostream>
#include<algorithm>
using namespace std;
const int MaxN = 100010;
int B[MaxN]; void HeapRefresh(int *a, int index,int length){
int i = index;
int child = 2*i+1; // 使当前子树满足最小堆
while(child<length){ if(child<(length-1)&&*(a+child+1)>*(a+child)) // 右子节点存在,选择较小的子节点
child++;
if(*(a+child)>*(a+i)){
swap(*(a+child), *(a+i));
}
else{
break;
}
i = child;
child = 2*i+1;
}
} void CreatHeap(int *a, int length){
int j;
// length/2-1 为最后一个非叶节点
for(j = length/2-1;j>=0;j--){
HeapRefresh(a, j,length);
} }
int main(){
int n,k;
cin>>n>>k;
int minH[k];
for(int i=0;i<n;i++){
cin>>B[i];
if(i<k)minH[i]=B[i];
}
CreatHeap(minH,k);
for(int i=k;i<n;i++){
if(B[i]<minH[0]){
minH[0]=B[i];
HeapRefresh(minH,0,k);
}
}
for(int j=0;j<k;j++){
if(j+1==k)
cout<<minH[j]<<endl;
else
cout<<minH[j]<<' ';
}
return 0;
}

解法四:

思路:线性选择算法,O(n).

(未完待续)

编程之法section II: 2.1 求最小的k个数的更多相关文章

  1. 编程之法section II: 2.2 和为定值的两个数

    ====数组篇==== 2.2 求和为定值的两个数: 题目描述:有n个整数,找出其中满足两数相加为target的两个数(如果有多组满足,只需要找出其中一组),要求时间复杂度尽可能低. 解法一: 思路: ...

  2. php实现求最小的k个数(日常出错很容易是分号或者$符号忘记写了)

    php实现求最小的k个数(日常出错很容易是分号或者$符号忘记写了) 一.总结 日常出错很容易是分号或者$符号忘记写了 二.php实现求最小的k个数 题目描述 输入n个整数,找出其中最小的K个数.例如输 ...

  3. 求最小的k个数

    和高速排序有点类似,利用高速排序的划分算法, 划分算法见http://blog.csdn.net/buyingfei8888/article/details/8997803 依据int partiti ...

  4. 输入一个数组,求最小的K个数

    被这道题困了好久,看了剑指Offer才知道OJ上的要求有点迷惑性. 题目: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 一 ...

  5. 编程之法:面试和算法心得(寻找最小的k个数)

    内容全部来自编程之法:面试和算法心得一书,实现是自己写的使用的是java 题目描述 输入n个整数,输出其中最小的k个. 分析与解法 解法一 要求一个序列中最小的k个数,按照惯有的思维方式,则是先对这个 ...

  6. 编程之法:面试和算法心得(字符串包含java实现)

    内容全部来自编程之法:面试和算法心得一书,实现是自己写的使用的是java 题目描述 给定两个分别由字母组成的字符串A和字符串B,字符串B的长度比字符串A短.请问,如何最快地判断字符串B中所有字母是否都 ...

  7. 编程之法:面试和算法心得(旋转字符串java实现)

    内容全部来自编程之法:面试和算法心得一书,实现是自己写的使用的是java 题目描述 给定一个字符串,要求把字符串前面的若干个字符移动到字符串的尾部,如把字符串“abcdef”前面的2个字符'a'和'b ...

  8. 求一个数组中最小的K个数

    方法1:先对数组进行排序,然后遍历前K个数,此时时间复杂度为O(nlgn); 方法2:维护一个容量为K的最大堆(<算法导论>第6章),然后从第K+1个元素开始遍历,和堆中的最大元素比较,如 ...

  9. 求给定数据中最小的K个数

    public class MinHeap { /* * * Top K个问题,求给定数据中最小的K个数 * * 最小堆解决:堆顶元素为堆中最大元素 * * * */ private int MAX_D ...

随机推荐

  1. 图片 和 base64 互转

    图片转base64 NSData *data = [NSData dataWithContentsOfURL:[NSURL URLWithString:urlStr]]; UIImage *img = ...

  2. 微信公众号开发被动回复用户消息,回复内容Content使用了"\n"换行符还是没有换行

    使用语言和框架:本人后端开发使用的Python的DRF(Django REST framework)框架 需求:在微信公众号开发时,需要实现自动回复,即被关注回复.收到消息回复.关键词回复 发现问题: ...

  3. 关于Modelsim SE软件Fatal License Error的解决方法

    操作环境:Win7 32位系统 软件版本:Modelsim SE 10.1a Modelsim SE软件有时会弹出如图1所示“Fatal License Error”的提示信息,原因可能是软件破解不彻 ...

  4. [HNOI2013]比赛 搜索

    [HNOI2013]比赛 搜索. LG传送门 直接暴力有60,考场上写的60,结果挂成40. 考虑在暴力的同时加个记忆化,把剩下的球队数和每支球队的得分情况hash一下,每次搜到还剩\(t\)个队的时 ...

  5. 2_C语言中的数据类型 (四)整数与无符号数

    1.1       sizeof关键字 sizeof是c语言关键字,功能是求指定数据类型在内存中的大小,单位:字节 sizeof与size_t类型 1.1       int类型 1.1.1      ...

  6. WPF中如何使用BusyIndicator

    一.下载dll:http://wpftoolkit.codeplex.com/releases/view/99072 下载之后将WPFToolkit引用到WPF项目下: 二.添加命名空间: xmlns ...

  7. 办公区公网Ip访问不到阿里云ECS

    办公区公网Ip访问不到阿里云ECS 工作中遇见这样的问题, Hadoop 部署在办公区内网, 而应用有些的数据在阿里云ECS主机中,现在hadoop 访问ECS 却访问不到ESC ,最终电话咨询阿里云 ...

  8. Fiddler接口测试(一)post接口测试

    项目背景: 1.接口URL:http://192.168.xx.xx:8080/mserver/rest/ms 2.接口参数:data=xxxxx&key=xxxxx,数据是加密的 另一种参数 ...

  9. Jmeter+ant+jenkins接口自动化测试 平台搭建(一)

    平台简介 一个完整的接口自动化测试平台需要支持接口的自动执行,自动生成测试报告,以及持续集成.Jmeter 支持接口的测试,Ant 支持自动构建,而 Jenkins 支持持续集成,所以三者组合在一起可 ...

  10. CentOS 7.X下 -- 配置nginx正向代理支持https

    环境说明: 本次测试使用的操作系统为:CentOS 7.2 x86 64位 最小化安装的操作系统,系统基础优化请参考:https://www.cnblogs.com/hei-ma/p/9506623. ...