soj1564. HOUSING
1564. HOUSING
Constraints
Time Limit: 1 secs, Memory Limit: 32 MB
Description
For the Youth Olympic Games in Singapore, the administration is considering to house each team in several units with at least 5 people per unit. A team can have from 5 to 100 members, depending on the sport they do. For example, if there are 16 team members, there are 6 ways to distribute the team members into units: (1) one unit with 16 team members; (2) two units with 5 and 11 team members, respectively; (3) two units with 6 and 10 team members, respectively; (4) two units with 7 and 9 team members, respectively; (5) two units with 8 team members each; (6) two units with 5 team members each plus a third unit with 6 team members. This list might become quite lengthy for a large team size.
In order to see how many choices to distribute the team members there are, the administration would like to have a computer program that computes for a number n the number m(n) of possible ways to distribute the team members into the units allocated, with at least 5 people per unit. Note that equivalent distributions like 5 + 5 + 6, 5 + 6 + 5 and 6 + 5 + 5 are counted only once. So m(16) = 6 (as seen above), m(17) = 7 (namely 17, 5 + 12, 6 + 11, 7 + 10, 8 + 9, 5 + 5 + 7, 5 + 6 + 6) and m(20) = 13.
The computer program should read the number n and compute m(n).
Input
The input contains just one number which is the number n as described above, where 5 <= n <= 100.
Output
The output consists of a single line with an integer that is the number m(n) as specified above. As n is at most 100, one can estimate that m(n) has at most 7 decimal digits.
Sample Input
20
Sample Output
13
跟那个换零钱的动态规划差不多,但是这里硬币数是由5——n,因此改一改即可。
#include <iostream>
#include <memory.h>
using namespace std;
long long f[110];
int main()
{
int n;
while(cin >> n)
{
memset(f,0,sizeof(f));
int i;
f[0] = 1;
int j;
for(i = 5;i <= n;i++)
{
for(j = i;j <= n;j++)
f[j] += f[j-i];
}
cout << f[n] << endl;
}
return 0;
}
soj1564. HOUSING的更多相关文章
- 机器学习实战二:波士顿房价预测 Boston Housing
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...
- hdu 2426 Interesting Housing Problem 最大权匹配KM算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2426 For any school, it is hard to find a feasible ac ...
- [ An Ac a Day ^_^ ] UVALive 2635 Housing Complexes 二分图最大匹配
快要比赛了 看看原来做过的题 感觉这道题当时做的还是挺费劲的 所以发一下 题意: 一个土豪要建别墅 因为有的地区地方不够大 所以要拆屋子 每个地方的字母就是对应开发商的地盘 没有字母的就是自由土地 一 ...
- HDU 2426 Interesting Housing Problem (最大权完美匹配)【KM】
<题目链接> 题目大意: 学校里有n个学生和m个公寓房间,每个学生对一些房间有一些打分,如果分数为正,说明学生喜欢这个房间,若为0,对这个房间保持中立,若为负,则不喜欢这个房间.学生不会住 ...
- HDU 2426 Interesting Housing Problem(二分图最佳匹配)
http://acm.hdu.edu.cn/showproblem.php?pid=2426 题意:每n个学生和m个房间,现在要为每个学生安排一个房间居住,每个学生对于一些房间有一些满意度,如果满意度 ...
- HDU2426:Interesting Housing Problem(还没过,貌似入门题)
#include <iostream> #include <queue> #include <stdio.h> #include <string.h> ...
- Sberbank Russian Housing Market比赛总结
第一次真正意义上参加kaggle比赛,都是工作之余看看别人的kernel,然后整理整理自己的分析代码. 总体来说,本次比赛对我而言更像一个入门比赛,更多的是走走kaggle比赛的整个流程,看看高手们都 ...
- advanced regression to predict housing prices
https://docs.google.com/presentation/d/e/2PACX-1vQGlXP6QZH0ATzXYwnrXinJcCn00fxCOoEczPAXU-n3hAPLUfMfi ...
- [Hands-on-Machine-Learning-master] 02 Housing
用到的函数 numpy.random.permutation随机排列一个序列,返回一个排列的序列. >>> np.random.permutation(10) array([1, 7 ...
随机推荐
- Mac下不能安装第三方下载软件
1.安装成功后,启动时如提示“某某文件已损坏,打不开”,请将电脑的“系统偏好设置--安全性与隐私--通用”的允许从以下位置下载的应用程序设置为“任何来源”. 2.如果您的电脑上没有“任何来源”的选项, ...
- HBase 架构与工作原理3 - HBase 读写与删除原理
本文系转载,如有侵权,请联系我:likui0913@gmail.com 一.前言 在 HBase 中,Region 是有效性和分布的基本单位,这通常也是我们在维护时能直接操作的最小单位.比如当一个集群 ...
- Sql Server外键约束
一.添加约束(级联删除) 1.创建表结构时添加 create table UserDetails(id int identity(1,1) primary key,name varchar(50) n ...
- [学习]仿照cnblog 搭建 Oracle RAC 双节点 困.. 后续做不下去了..
1. 学习地址: https://blog.csdn.net/yuzifen?t=1 2. 克隆之前创建好的虚拟机: 3. 给虚拟机增加新的硬盘. 注意事项 1) 必须是厚置备的磁盘才可以. 2) 必 ...
- Majority Number III
Given an array of integers and a number k, the majority number is the number that occursmore than 1/ ...
- Nagios学习笔记
1 Nagios功能 1.1 监控工具 1.2 可以监控主机/服务或者资源 1.3 四种状态值 OK,WARNING,CRITICAL,UNKNOWN CPU:90%(CRITICAL),80% ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- Python语言算法的时间复杂度和空间复杂度
算法复杂度分为时间复杂度和空间复杂度. 其作用: 时间复杂度是指执行算法所需要的计算工作量: 而空间复杂度是指执行这个算法所需要的内存空间. (算法的复杂性体现在运行该算法时的计算机所需资源的多少上, ...
- ansible部署(pip安装)
centos7 pip安装 ansible 首先ansible基于python2.X 环境 默认centos都已经安装好了python2环境 安装可选性 ansible可以通过源码,yum,pip等方 ...
- DAY5-Python学习笔记
1.电子邮件: 邮件历程: 发件人 -> MUA -> MTA -> MTA -> 若干个MTA -> MDA <- MUA <- 收件人编写MUA把邮件发到 ...