【HNOI2013】数列
题面
题解
设\(\{a_n\}\)为差分数组,可以得到柿子:
ans &= \sum_{a_1 = 1} ^ m \sum_{a_2 = 1} ^ m \cdots \sum_{a_{k-1} = 1} ^ m (n - \sum_{i = 1} ^ {k - 1} a_i) \\
&= nm^{k - 1} - \sum_{a_1 = 1} ^ m \sum_{a_2 = 1} ^ m \cdots \sum_{a_{k - 1} = 1} ^ m \sum_{i = 1} ^ {k - 1} a_i \\
&= nm^{k - 1} - \sum_{i = 1} ^ {k - 1} \sum_{a_1 = 1} ^ m \sum_{a_2 = 1} ^ m \cdots \sum_{a_{k - 1} = 1} ^ m a_i \\
&= nm ^ {k - 1} - \sum_{i = 1} ^ {k - 1} \sum_{a_i = 1} ^ m a_i \times m ^ {k - 2} \\
&= nm ^ {k - 1} - m^{k - 2}(k - 1) \times \frac{m(m + 1)}2
\end{aligned}
\]
没了
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define clear(x, y) memset(x, y, sizeof(x))
inline long long read()
{
long long data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
long long N;
int n, k, m, p;
inline int Add(int x, int y) { return (x + y) % p; }
inline int Minus(int x, int y) { return (x - y + p) % p; }
inline int Mul(int x, int y) { return 1ll * x * y % p; }
inline int fastpow(int x, int y)
{
int ans = 1;
for(; y; y >>= 1, x = 1ll * x * x % p)
if(y & 1) ans = 1ll * ans * x % p;
return ans;
}
inline int S(int x) { return 1ll * x * (x + 1) / 2 % p; }
int main()
{
N = read(), k = read(), m = read(), p = read();
n = N % p, k %= p, m %= p;
printf("%d\n", Minus(Mul(n, fastpow(m, k - 1)),
Mul(fastpow(m, k - 2), Mul(k - 1, S(m)))));
return 0;
}
【HNOI2013】数列的更多相关文章
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ3142】[HNOI2013]数列
[BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...
- [洛谷P3228] [HNOI2013]数列
洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...
- [BZOJ3142][HNOI2013]数列(组合数学)
3142: [Hnoi2013]数列 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1721 Solved: 854[Submit][Status][ ...
- BZOJ3142 [Hnoi2013]数列
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- 3142:[HNOI2013]数列 - BZOJ
题目描述 Description 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨. 股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到:除第一天外每天 ...
- bzoj千题计划293:bzoj3142: [Hnoi2013]数列
http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...
- [BZOJ3142][HNOI2013]数列(组合)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...
- bzoj 3142: [Hnoi2013]数列
Description 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到:除第一天外每天的股价都比前 ...
- bzoj3142 luogu3228 HNOI2013 数列
这题好没意思啊,怀疑拉不开区分度. 题意:求一个递增序列,每两个相邻数字之间的差值不超过m,最后一个值不能大于n. 分析:网上好多人用了差分,我没想到.然后YY了一发生成函数. 考虑构造生成函数G(x ...
随机推荐
- Windows ->> 解决Windows 10下面无法多用户同时远程桌面
解决Windows 10下面无法多用户同时远程桌面 https://pc4u.org/how-to-allow-multiple-rdp-sessions-windows-10-without-mod ...
- [翻译] ios-image-filters
ios-image-filters https://github.com/esilverberg/ios-image-filters photoshop-style filter interface ...
- 多数据源报错 expected single matching bean but found 2: xxx,xxx
问题: expected single matching bean but found 2: xxx,xxx 原因:在 Spring 容器中配置了两个类型Bean,Spring 容器将无法确定到底要用 ...
- November 26th 2016 Week 48th Saturday
All growth is a leap in the dark. 所有的成长都是黑暗中的一跃. But it is a dark and long night, I can't see any st ...
- 我遇到的问题:耗时久/效率低 ---> 应对方案: 行动-结果指向
这一篇打的时候,时间都挺靠后的了, 当时出现错误,很慌了,一个是时间比较久,5点多了,一个是陈果已经做了很多题了,这些是事实. 导致我慌张的原因,简单来说是比较,长久以来,我都爱去和别人比较.如果赢了 ...
- 面对对象程序设计_task2_1001.A+B Format (20)
Someting about 1001.A+B Format (20) 问题描述及我所写的代码:click here → My Task 看到这个题目的时候,我的想法很简单,直接判断直接输出,因为给定 ...
- Alpha 冲刺报告(3/10)
Alpha 冲刺报告 队名:洛基小队 峻雄(组长) 已完成:开始编写角色的移动脚本 明日计划:继续学习并进行脚本编写 剩余任务:物品背包交互代码 困难:如何把各个模块的脚本整合起来 --------- ...
- U-Mail详解邮件营销优势及应用领域
最近频频有营销人员向U-Mail小编咨询:邮件营销到底有什么好处呢?与此同时,还有不少人对邮件营销存在一定的误解:邮件营销是不是只给潜在消费者发送邮件推广商品呢?其实邮件群发的应用面非常广泛,可不仅仅 ...
- Python简单实现多级菜单
# -*- coding: utf-8 -*- # @Time : 2018-06-01 13:40 # @Author : 超人 # @Email : huxiaojiu111@gmail.com ...
- 2002. [HNOI2010]弹飞绵羊【LCT】
Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...