本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras

原文使用 python 实现模型,这里是用 R

基于 Keras 用深度学习预测时间序列

时间序列预测一直以来是机器学习中的一个难题。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络模型实现时间序列预测。

文章的主要内容:

  • 如何将时间序列预测问题表示成为一个回归问题,并建立对应的神经网络模型。
  • 如何使用滞后时间的数据实现时间序列预测,并建立对应的神经网络模型。

问题描述

“航班旅客数据”是一个常用的时间序列数据集,该数据包含了 1949 至 1960 年 12 年间的月度旅客数据,共有 144 个观测值。

下载链接:international-airline-passengers.csv

多层感知机回归

时间序列预测中最简单的思路之一便是寻找当前和过去数据(\(X_t, X_{t-1}, \dots\))与未来数据($ X_{t+1}$)之间的关系,这种关系通常会表示成为一个回归问题。

下面着手将时间序列预测问题表示成一个回归问题,并建立神经网络模型用于预测。

首先,加载相关 R 包。

library(keras)
library(dplyr)
library(ggplot2)
library(ggthemes)
library(lubridate)

神经网络模型在训练时存在一定的随机性,所以要为计算统一随机数环境

set.seed(7)

画出整体数据的曲线图,对问题有一个直观的认识。

dataframe <- read.csv(
'international-airline-passengers.csv') dataframe$Month <- paste0(dataframe$Month,'-01') %>%
ymd() ggplot(
data = dataframe,
mapping = aes(
x = Month,
y = passengers)) +
geom_line() +
geom_point() +
theme_economist() +
scale_color_economist()

图1

很显然,数据体现出“季节性”,同时存在线性增长和波动水平增大的趋势。

将数据集分成两部分:训练集和测试集,比例分别占数据集的 2/3 和 1/3。

dataset <- dataframe$passengers

train_size <- as.integer(length(dataset) * 0.67)
test_size <- length(dataset) - train_size train <- dataset[1:train_size]
test <- dataset[(train_size + 1):length(dataset)] cat(length(train), length(test))
96 48

为训练神经网络对数据做预处理,用数据构造出两个矩阵,分别是“历史数据”(作为预测因子)和“未来数据”(作为预测目标)。这里用最近一个月的历史数据做预测。

create_dataset <- function(dataset,
look_back = 1)
{
l <- length(dataset)
dataX <- matrix(nrow = l - look_back, ncol = look_back) for (i in 1:ncol(dataX))
{
dataX[, i] <- dataset[i:(l - look_back + i - 1)]
} dataY <- matrix(
data = dataset[(look_back + 1):l],
ncol = 1) return(
list(
dataX = dataX,
dataY = dataY))
} look_back <- 1
trainXY <- create_dataset(train, look_back)
testXY <- create_dataset(test, look_back)

下面构造神经网络的框架结构并用处理过的训练数据训练。

model <- keras_model_sequential()

model %>%
layer_dense(
units = 8,
input_shape = c(look_back),
activation = 'relu') %>%
layer_dense(units = 1) %>%
compile(
loss = 'mean_squared_error',
optimizer = 'adam') %>%
fit(
trainXY$dataX,
trainXY$dataY,
epochs = 200,
batch_size = 2,
verbose = 2)

训练结果如下。

trainScore <- model %>%
evaluate(
trainXY$dataX,
trainXY$dataY,
verbose = 0) testScore <- model %>%
evaluate(
testXY$dataX,
testXY$dataY,
verbose = 0) sprintf(
'Train Score: %.2f MSE (%.2f RMSE)',
trainScore,
sqrt(trainScore)) sprintf(
'Test Score: %.2f MSE (%.2f RMSE)',
testScore,
sqrt(testScore))
[1] "Train Score: 538.50 MSE (23.21 RMSE)"
[1] "Test Score: 2342.33 MSE (48.40 RMSE)"

把训练数据的拟合值、测试数据的预测值和原始数据画在一起。

trainPredict <- model %>%
predict(trainXY$dataX)
testPredict <- model %>%
predict(testXY$dataX) df <- data.frame(
index = 1:length(dataset),
value = dataset,
type = 'raw') %>%
rbind(
data.frame(
index = 1:length(trainPredict) + look_back,
value = trainPredict,
type = 'train')) %>%
rbind(
data.frame(
index = 1:length(testPredict) + look_back + length(train),
value = testPredict,
type = 'test')) ggplot(data = df) +
geom_line(
mapping = aes(
x = index,
y = value,
color = type)) +
geom_point(
mapping = aes(
x = index,
y = value,
color = type)) +
geom_vline(
xintercept = length(train) + 0.5) +
theme_economist() +
scale_color_economist()

图2

黑线左边是训练部分,右边是测试部分。

从图中可以看出,神经网络模型抓住了数据线性增长和波动率逐渐增加的两大趋势,在不做数据转换的前提下,这是经典的时间序列分析模型不容易做到的;但是很可能没有识别出“季节性”的结构特点,因为训练和预测结果和原始数据之间存在“平移错位”。

多层感知机回归结合“窗口法”

前面的例子可以看出,如果仅使用\(X_{t-1}\)来预测\(X_t\),很难让神经网络模型识别出“季节性”的结构特征,因此有必要尝试增加“窗口”宽度,使用更多的历史数据(包含一个完整的周期)训练模型。

下面将数 create_dataset 中的参数 look_back 设置为 12,用来包含过去 1 年的历史数据,重新训练模型。

look_back <- 12
trainXY <- create_dataset(train, look_back)
testXY <- create_dataset(test, look_back) model <- keras_model_sequential() model %>%
layer_dense(
units = 8,
input_shape = c(look_back),
activation = 'relu') %>%
layer_dense(units = 1) %>%
compile(
loss = 'mean_squared_error',
optimizer = 'adam') %>%
fit(
trainXY$dataX,
trainXY$dataY,
epochs = 200,
batch_size = 2,
verbose = 2) trainScore <- model %>%
evaluate(
trainXY$dataX,
trainXY$dataY,
verbose = 0) testScore <- model %>%
evaluate(
testXY$dataX,
testXY$dataY,
verbose = 0) sprintf(
'Train Score: %.2f MSE (%.2f RMSE)',
trainScore,
sqrt(trainScore)) sprintf(
'Test Score: %.2f MSE (%.2f RMSE)',
testScore,
sqrt(testScore)) trainPredict <- model %>%
predict(trainXY$dataX)
testPredict <- model %>%
predict(testXY$dataX) df <- data.frame(
index = 1:length(dataset),
value = dataset,
type = 'raw') %>%
rbind(
data.frame(
index = 1:length(trainPredict) + look_back,
value = trainPredict,
type = 'train')) %>%
rbind(
data.frame(
index = 1:length(testPredict) + look_back + length(train),
value = testPredict,
type = 'test')) ggplot(data = df) +
geom_line(
mapping = aes(
x = index,
y = value,
color = type)) +
geom_point(
mapping = aes(
x = index,
y = value,
color = type)) +
geom_vline(
xintercept = length(train) + 0.5) +
theme_economist() +
scale_color_economist()
[1] "Train Score: 157.17 MSE (12.54 RMSE)"
[1] "Test Score: 690.69 MSE (26.28 RMSE)"

图3

新的模型基本上克服了“平移错位”的现象,同时依然能够识别出线性增长和波动率逐渐增加的两大趋势。

改进方向

  • 目前对“季节性”的识别是靠增加历史数据实现的,能否从神经网络结构的方向入手。
  • 目前的模型中几乎没有用到“特征工程”,如何用特征工程表示数据中存在的主要趋势和结构化特征。
  • DNN + ARIMA:一方作为另外一方的“特征工程”手段。

扩展阅读

基于 Keras 用深度学习预测时间序列的更多相关文章

  1. [AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建

    这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).wind ...

  2. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  3. 学习Keras:《Keras快速上手基于Python的深度学习实战》PDF代码+mobi

    有一定Python和TensorFlow基础的人看应该很容易,各领域的应用,但比较广泛,不深刻,讲硬件的部分可以作为入门人的参考. <Keras快速上手基于Python的深度学习实战>系统 ...

  4. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

  5. 从Theano到Lasagne:基于Python的深度学习的框架和库

    从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...

  6. 基于OpenCL的深度学习工具:AMD MLP及其使用详解

    基于OpenCL的深度学习工具:AMD MLP及其使用详解 http://www.csdn.net/article/2015-08-05/2825390 发表于2015-08-05 16:33| 59 ...

  7. 基于TensorFlow的深度学习系列教程 2——常量Constant

    前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hell ...

  8. 基于pythpn的深度学习 - 记录

    [基于pythpn的深度学习] 环境:    windows/linux-ubuntu    Tensorflow (基于anaconda)        *安装 (python3.5以上不支持)   ...

  9. 使用Keras进行深度学习:(七)GRU讲解及实践

    ####欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 GRU(Gated Recurrent Unit) ...

随机推荐

  1. 深入理解net core中的依赖注入、Singleton、Scoped、Transient(二)

    相关文章: 深入理解net core中的依赖注入.Singleton.Scoped.Transient(一) 深入理解net core中的依赖注入.Singleton.Scoped.Transient ...

  2. TYPE_SCROLL_INSENSITIVE is not compatible with CONCUR_UPDATABLE

    There are two options when setting ResultSet to be scrollable: TYPE_SCROLL_INSENSITIVE - The result ...

  3. html的button疑问

    button是可以自动垂直居中的,随便给个高度,它都会自动垂直居中.用控制台查看computed属性里也没有发现和垂直相关的,贴出来希望以后能够了解或有高手看到来解惑小弟:)

  4. Spring常用注解简单汇总

    使用注解之前要开启自动扫描功能,其中base-package为需要扫描的包(含子包). <context:component-scan base-package="cn.test&qu ...

  5. Sqlite 语句 记录

    //string ComId = "select Max(ComId) AS ComId from Card order by ComId ";//位数一样可以直接MAx stri ...

  6. POST请求上传多张图片并携带参数

    POST请求上传多张图片并携带参数 在iOS中,用POST请求携带参数上传图片是非常恶心的事情,HTTPBody部分完全需要我们自己来配置,这个HTTPBody分为3个部分,头部分可以携带参数,中间部 ...

  7. Mitigate XSS attacks

    JavaScriptEncode //使用“\”对特殊字符进行转义,除数字字母之外,小于127使用16进制“\xHH”的方式进行编码,大于用unicode(非常严格模式). var JavaScrip ...

  8. EBS中比较复杂的trace方法

    FND LOG Messages-------------------------a) Using the System Administrator Responsibility, navigate  ...

  9. THE CUP OF LIFE即生命之杯。

    生命之杯 编辑 THE CUP OF LIFE即生命之杯. <生命之杯>(西班牙语:La copa de la vida,英语:The Cup of Life)是一首由波多黎各裔歌手瑞奇· ...

  10. PostProcess崩溃

    1.__debugbreak 功能暂停程序执行,打开调试器,进入调试模式. 2.重要参考: https://blog.csdn.net/phenixyf/article/details/4930457 ...