题目大意就是给出一个矩阵,每个格子里面要么是0, 要么是1;是否能够经过交换(交换行或者列)使得主对角线上都是1。

其实就行和列的匹配,左边是行,右边是列,然后如果行列交点是1,那么就可以匹配,看是否为完美匹配,然后输出怎么交换的。开始很蒙的,后来仔细去 想,可以这样理解,想要对角线上都是1,那么我们就可以锁定行,来选择列和它匹配,将选择的列移动到和该行形成对角线上是1的位置,比如和第一行匹配的 列,就要移动要第一列,第二行的,就到第二列。其实就是对第i行,找一个第i个数是1的列和它匹配,然后看是否是最大匹配!

路径的输出其实就是 调整匹配使之都为横线,调整的过程就是要输出的路径,调整列和行是相同的,所以锁定一个方向就行了

Sample Input

2
0 1
1 0
2
1 0
1 0
Sample Output
1
R 1 2
-1 2015-05-14:
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
int n,m,tt;
const int MAXN = ;
int a[],b[];
int uN,vN;//u,v的数目,使用前面必须赋值
int g[MAXN][MAXN];//邻接矩阵
int linker[MAXN];
bool used[MAXN];
bool dfs(int u)
{
for(int v = ; v < vN;v++)
if(g[u][v] && !used[v])
{
used[v] = true;
if(linker[v] == - || dfs(linker[v]))
{
linker[v] = u;
return true;
}
}
return false;
}
int hungary()
{
int res = ;
memset(linker,-,sizeof(linker));
for(int u = ;u < uN;u++)
{
memset(used,false,sizeof(used));
if(dfs(u))res++;
}
return res;
}
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
while(scanf("%d",&n)!=EOF)
{
uN=vN=n;
for(i=;i<n;i++)
for(j=;j<n;j++) scanf("%d",&g[i][j]);
int ans=hungary();
if(ans<n)
{
printf("-1\n");
continue;
}
int res=;
for(i=;i<n;i++)
{
for(j=;j<n;j++)
{
if(linker[j]==i) break;
}
if(i!=j)
{
a[res]=i,b[res++]=j;
int temp=linker[j];
linker[j]=linker[i];
linker[i]=temp;
}
}
printf("%d\n",res);
for(i=;i<res;i++)
{
printf("C %d %d\n",a[i]+,b[i]+);
}
}
}

hdu 2819 记录路径的二分匹配的更多相关文章

  1. hdu 1507 记录路径的二分匹配 **

    题意:N*M的矩形,向其中填充1*2的小块矩形,黑色的部分不能填充,问最多可以填充多少块.链接:点我 黑白棋最大匹配 将棋盘中i+j为奇数的做A集合,偶数的做B集合,相邻的则建立联系.于是便转换成寻找 ...

  2. HDU 2063 过山车(二分匹配入门)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2063 二分匹配最大匹配数简单题,匈牙利算法.学习二分匹配传送门:http://blog.csdn.ne ...

  3. HDU - 1045 Fire Net(二分匹配)

    Description Suppose that we have a square city with straight streets. A map of a city is a square bo ...

  4. hdu 4619 Warm up 2 (二分匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4619 题意: 平面上有一些1×2的骨牌,每张骨牌要么水平放置,要么竖直放置,并且保证同方向放置的骨牌不 ...

  5. HDU 2063 过山车 二分匹配

    解题报告:有m个女生和n个男生要结成伴坐过山车,每个女生都有几个自己想选择的男生,然后要你确定最多能组成多少对组合. 最裸的一个二分匹配,这是我第一次写二分匹配,给我最大的感受就是看那些人讲的匈牙利算 ...

  6. hdu 1528 Card Game Cheater (二分匹配)

    Card Game Cheater Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. hdu 1068 Girls and Boys (二分匹配)

    Girls and Boys Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. HDU - 1068 Girls and Boys(二分匹配---最大独立集)

    题意:给出每个学生的标号及与其有缘分成为情侣的人的标号,求一个最大集合,集合中任意两个人都没有缘分成为情侣. 分析: 1.若两人有缘分,则可以连一条边,本题是求一个最大集合,集合中任意两点都不相连,即 ...

  9. hdu 1150 Machine Schedule (经典二分匹配)

    //A组n人 B组m人 //最多有多少人匹配 每人仅仅有匹配一次 # include<stdio.h> # include<string.h> # include<alg ...

随机推荐

  1. 利用SSLStrip截获https协议--抓取邮箱等密码

    1.SSL解析 SSL 是 Secure Socket Layer 的简称, 中文意思是安全套接字层,由 NetScape公司所开发,用以保障在 Internet 上数据传输的安全,确保数据在网络的传 ...

  2. sqlplus设置长度

    1.set linesize   100 2.col  XX format  a30 3.col  XXX format 9,999,999,999 3.set heading off  表头不显示

  3. 2018ICPC南京网络赛

    2018ICPC南京网络赛 A. An Olympian Math Problem 题目描述:求\(\sum_{i=1}^{n} i\times i! \%n\) solution \[(n-1) \ ...

  4. [android] The_connection_to_adb_is_down__and_a_severe_error_has_occured解决方案

    初学安卓,这是我碰到的第一个问题,从网上找了些解决方法,同时也把问题解决了. 方案一 1.先把eclipse关闭. 2.在管理器转到你的android SDK 的platform-tools下, 如图 ...

  5. python3项目之数据可视化

    数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联. 数据科学家使用Python编写了一系列令人印象深刻的可视化和分析工具,其中很多也可供 ...

  6. 整理一下关于Crypto加密的坑

    之前写接口一般不用加密(做了权限处理),最近公司要求接口加密,我开始了入坑之路 因为公司其他人用的AES和DES加密,我就在网上查了下关于这方面的使用方法. 首先安装Crypto pip instal ...

  7. Python 离线环境

    一.应用场景 比如:对于数据安全要求比较严格的机房,服务器是不允许上网的.那么我现在开发了一套python程序,需要一些模块,怎么运行? 二.离线包制作 有2个解决方案: 1. 使用requireme ...

  8. 2016-2017-2 20155309南皓芯《java程序设计》第九周学习总结

    教材内容介绍 一 JDBC简介 JDBC是用于执行SQL的解决方案,开发人员使用JDBC的标准接口,数据库厂商则对接口进行操作,开发人员无须接触底层数据库驱动程序的差异性 JDBC标准分为两个部分:J ...

  9. vi/vim基本使用方法(转)

    转自:http://www.cnblogs.com/itech/archive/2009/04/17/1438439.html vi/vim 基本使用方法 本文介绍了vi (vim)的基本使用方法,但 ...

  10. sass问题

     用sass的minix定义一些代码片段,且可传参数 /** * @module 功能 * @description 生成全屏方法 * @method fullscreen * @version 1. ...