很裸的子集反演模板题,套上一些莫名其妙的外衣。

先预处理每个集合是否合法,再作显然的状压DP。然后发现可以写成子集反演的形式,直接套模板即可。

子集反演可以看这里

子集反演的过程就是多设一维代表集合大小,再FMT处理集合并卷积。

然而我的FMT常数过大,而并卷积又可以用FWT实现,于是就写FWT了。(实际上就三行的区别)

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=;
int n,m,p,x,y,mp[N][N],w[N],fa[N],a[N],d[N],sm[<<N],sz[<<N],lg[<<N],f[N][<<N],g[N][<<N]; int pow(int a,int b){ return b== ? : (b== ? a : 1ll*a*a%mod); }
int get(int x){ return (fa[x]==x) ? x : fa[x]=get(fa[x]); } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void init(){
rep(i,,n) lg[<<i]=i;
rep(S,,(<<n)-){
int t=S&-S,tot=;
sm[S]=sm[S^t]+w[lg[t]]; sz[S]=sz[S^t]+;
for (int i=S; i; i=i^(i&-i)) a[++tot]=lg[i&-i];
rep(i,,tot) fa[a[i]]=a[i],d[a[i]]=;
rep(i,,tot){
rep(j,,tot) if (mp[a[i]][a[j]]) d[a[i]]^=,fa[get(a[i])]=get(a[j]);
if (d[a[i]]) { g[sz[S]][S]=; break; }
}
int f=get(a[]);
rep(i,,tot) if (f!=get(a[i])){ g[sz[S]][S]=; break; }
}
rep(i,,(<<n)-) sm[i]=pow(sm[i],p),g[sz[i]][i]=1ll*g[sz[i]][i]*sm[i]%mod;
} void FMT(int a[],int n,int f){
for (int i=; i<n; i<<=)
rep(j,,n-) if (j&i) a[j]=(a[j]+1ll*f*a[j^i]+mod)%mod;
} void solve(){
f[][]=; FMT(f[],<<n,);
rep(i,,n) FMT(g[i],<<n,);
rep(i,,n){
rep(j,,(<<n)-) rep(x,,i-)
f[i][j]=(f[i][j]+1ll*f[x][j]*g[i-x][j])%mod;
FMT(f[i],<<n,-);
rep(j,,(<<n)-)
if (sz[j]==i) f[i][j]=1ll*f[i][j]*ksm(sm[j],mod-)%mod; else f[i][j]=;
FMT(f[i],<<n,);
}
FMT(f[n],<<n,-); printf("%d\n",f[n][(<<n)-]);
} int main(){
scanf("%d%d%d",&n,&m,&p);
rep(i,,m) scanf("%d%d",&x,&y),mp[x-][y-]=mp[y-][x-]=;
rep(i,,n-) scanf("%d",&w[i]);
init(); solve();
return ;
}

FMT(TLE)

FWT:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=;
int n,m,p,x,y,mp[N][N],w[N],fa[N],a[N],d[N],sm[<<N],sz[<<N],lg[<<N],f[N][<<N],g[N][<<N]; int pow(int a,int b){ return b== ? : (b== ? a : 1ll*a*a%mod); }
int get(int x){ return (fa[x]==x) ? x : fa[x]=get(fa[x]); } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void init(){
rep(i,,n) lg[<<i]=i;
rep(S,,(<<n)-){
int t=S&-S,tot=;
sm[S]=sm[S^t]+w[lg[t]]; sz[S]=sz[S^t]+;
for (int i=S; i; i=i^(i&-i)) a[++tot]=lg[i&-i];
rep(i,,tot) fa[a[i]]=a[i],d[a[i]]=;
rep(i,,tot){
rep(j,,tot) if (mp[a[i]][a[j]]) d[a[i]]^=,fa[get(a[i])]=get(a[j]);
if (d[a[i]]) { g[sz[S]][S]=; break; }
}
int f=get(a[]);
rep(i,,tot) if (f!=get(a[i])){ g[sz[S]][S]=; break; }
}
rep(i,,(<<n)-) sm[i]=ksm(sm[i],p),g[sz[i]][i]=1ll*g[sz[i]][i]*sm[i]%mod;
} void FWT(int a[],int n,int f){
for (int i=; i<=n; i<<=)
for (int j=; j<n; j+=i)
rep(k,j,j+(i>>)-)
a[k+(i>>)]=(1ll*a[k+(i>>)]+f*a[k]+mod)%mod;
} void solve(){
f[][]=; FWT(f[],<<n,);
rep(i,,n) FWT(g[i],<<n,);
rep(i,,n){
rep(j,,(<<n)-) rep(x,,i-)
f[i][j]=(f[i][j]+1ll*f[x][j]*g[i-x][j])%mod;
FWT(f[i],<<n,-);
rep(j,,(<<n)-)
if (sz[j]==i) f[i][j]=1ll*f[i][j]*ksm(sm[j],mod-)%mod; else f[i][j]=;
FWT(f[i],<<n,);
}
FWT(f[n],<<n,-); printf("%d\n",f[n][(<<n)-]);
} int main(){
scanf("%d%d%d",&n,&m,&p);
rep(i,,m) scanf("%d%d",&x,&y),mp[x-][y-]=mp[y-][x-]=;
rep(i,,n-) scanf("%d",&w[i]);
init(); solve();
return ;
}

[WC2018]州区划分(状压DP+FWT/FMT)的更多相关文章

  1. UOJ348 WC2018 州区划分 状压DP、欧拉回路、子集卷积

    传送门 应该都会判欧拉回路吧(雾 考虑状压DP:设\(W_i\)表示集合\(i\)的点的权值和,\(route_i\)表示点集\(i\)的导出子图中是否存在欧拉回路,\(f_i\)表示前若干个城市包含 ...

  2. 【UOJ348】【WC2018】州区划分 状压DP FWT

    题目大意 给定一个\(n\)个点的无向图,对于每种 \(n\) 个点的划分\(\{S_1,S_2,\ldots,S_k\}\),定义它是合法的,当且仅当每个点都在其中的一个集合中且对于任何的\(i\i ...

  3. UOJ #348 州区划分 —— 状压DP+子集卷积

    题目:http://uoj.ac/problem/348 一开始可以 3^n 子集DP,枚举一种状态的最后一个集合是什么来转移: 设 \( f[s] \) 表示 \( s \) 集合内的点都划分好了, ...

  4. Luogu4221 WC2018州区划分(状压dp+FWT)

    合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方 ...

  5. 集合划分状压dp

    给一个 $n$ 个点 $m$ 条边的无向图,每条边有 $p_i$ 的概率消失,求图连通的概率 $n \leq 9$ sol: 我们考虑一个 $dp$ $f_{(i,S)}$ 表示只考虑前 $i$ 条边 ...

  6. P4221 [WC2018]州区划分 无向图欧拉回路 FST FWT

    LINK:州区划分 把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路. 充要条件有两个 联通 每个点度数为偶数. 预处理出所有状态. 然后设\(f_i\)表示组成情况为i的 ...

  7. [WC2018]州区划分——FWT+DP+FST

    题目链接: [WC2018]州区划分 题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路.对于一种划分方案,第i个部分的 ...

  8. [WC2018]州区划分(FWT,FST)

    [WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考 ...

  9. [WC2018]州区划分(FWT)

    题目描述 题解 这道题的思路感觉很妙. 题目中有一个很奇怪的不合法条件,貌似和后面做题没有什么关系,所以我们先得搞掉它. 也就是判断一个点集是否合法,也就是判断这个点集是否存在欧拉回路. 如果存在欧拉 ...

随机推荐

  1. 树形dp(C - Choosing Capital for Treeland CodeForces - 219D )

    题目链接:https://cn.vjudge.net/contest/277955#problem/C 题目大意:输入n,代表有n个城市,然后再输入n-1条有向边,然后让你找出一个改变边数的最小值,使 ...

  2. [转]STL 容器一些底层机制

    1.vector 容器 vector 的数据安排以及操作方式,与 array 非常相似.两者的唯一区别在于空间的运用的灵活性.array 是静态空间,一旦配置了就不能改变,vector 是动态数组.在 ...

  3. js原生选择class DOM元素

    document.querySelector(".demo"); querySelector() 方法返回匹配指定选择器的第一个元素.如果需要返回所有的元素,使用 querySel ...

  4. Linux 2440 LCD 控制器【转】

    转自:http://www.cnblogs.com/armlinux/archive/2011/01/14/2396864.html 嵌入式Linux之我行,主要讲述和总结了本人在学习嵌入式linux ...

  5. 安装Visual Studio Scrum 1.0过程模板

    近几年里,Scrum变成了相当流行的软件开发方法学.因为它轻量.可迭代且快速等优点,以致于在敏捷开发中极受欢迎.微软甚至将TFS2010自带的MSF Agile5.0过程模板做得像Scrum,开发者们 ...

  6. opencv之dft及mat类型转换

    跑实验时用到dft这个函数,根据教程,需要先将其扩充到最优尺寸,但我用逆变换后发现得到的mat的维数竟然不一样.因此还是不要扩展尺寸了. 参考:http://www.xpc-yx.com/2014/1 ...

  7. Robot Framework测试框架用例脚本设计方法

    Robot Framework介绍 Robot Framework是一个通用的关键字驱动自动化测试框架.测试用例以HTML,纯文本或TSV(制表符分隔的一系列值)文件存储.通过测试库中实现的关键字驱动 ...

  8. AdvStringGrid 标题头

    标题头内容: 字体: 标题头高度: 头的对齐方式:

  9. Effective STL 学习笔记 Item 18: 慎用 vector<bool>

    vector<bool> 看起来像是一个存放布尔变量的容器,但是其实本身其实并不是一个容器,它里面存放的对象也不是布尔变量,这一点在 GCC 源码中 vector<bool> ...

  10. JDBC核心API

    JDBC核心API在java.sql.*和javax.sql.* 1.Driver接口:表示Java驱动程序接口,具体的数据库厂商要实现其此接口 connect(url.propertis):连接数据 ...