【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述
输入
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
输出
T行 每行一个整数 表示第i组数据的结果
样例输入
1
4 5
样例输出
122
题解
莫比乌斯反演+线性筛
由于要处理多组询问,所以 bzoj2154 的做法就不好用了,但是这个结论可以套用过来。
然后推公式:
(UPD:上面公式最后一行请自行把 $k$ 改成 $n$ ... 由于这里是图片形式就不改了)
设f1(n)=n2mu(n),f2(n)=n,则显然f2是积性函数,f1为两个积性函数的乘积,也是积性函数。
那么f为f1和f2的狄利克雷卷积,也是积性函数。
所以可以尝试快筛f(n)。
当n为质数时,显然f(n)=n-n^2。
当n不为质数时,即n=i*p,p|i,p是质数,那么观察f(n)化简之后的式子,n新增加出来的约数一定是包含p^2的,它的mu值一定是0,所以f(n)的改变只是从i*...变为了n*...,所以此时f(n)=f(i)*p。
这样我们就可以快筛出f函数及其前缀和,然后对于每个询问分块求解即可。
#include <cstdio>
#include <algorithm>
#define mod 100000009
using namespace std;
const int n = 10000000;
typedef long long ll;
int prime[n + 10] , tot;
ll g[n + 10] , sum[n + 10];
bool np[n + 10];
ll s(int x)
{
return (ll)x * (x + 1) / 2 % mod;
}
ll cal(ll a , ll b)
{
int i , last;
ll ans = 0;
for(i = 1 ; i <= a && i <= b ; i = last + 1) last = min(a / (a / i) , b / (b / i)) , ans = (ans + (sum[last] - sum[i - 1] + mod) % mod * s(a / i) % mod * s(b / i) % mod) % mod;
return ans;
}
int main()
{
int i , j , T , a , b;
g[1] = sum[1] = 1;
for(i = 2 ; i <= n ; i ++ )
{
if(!np[i]) g[i] = ((i - (ll)i * i) % mod + mod) % mod , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= n ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
g[i * prime[j]] = g[i] * prime[j] % mod;
break;
}
else g[i * prime[j]] = g[i] * g[prime[j]] % mod;
}
sum[i] = (sum[i - 1] + g[i]) % mod;
}
scanf("%d" , &T);
while(T -- ) scanf("%d%d" , &a , &b) , printf("%lld\n" , cal(a , b));
return 0;
}
【bzoj2693】jzptab 莫比乌斯反演+线性筛的更多相关文章
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...
- Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)
既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...
随机推荐
- Hive配置文件hive-site.xml
<configuration> <property> <name>hive.metastore.warehouse.dir</name> <val ...
- Gson 使用new TypeToken<List<String>>(){}.getType() 为什么有 {}?
前言:使用 gson 时,不明白为什么有这种写法:new TypeToken<List<String>>(){}.getType(),所以来解惑.最终发现其实就是自己的 jav ...
- 总结oninput、onchange与onpropertychange事件的使用方法和差别
onchange事件仅仅在键盘或者鼠标操作改变对象属性,且失去焦点时触发,脚本触发无效:而onkeydown/onkeypress/onkeyup在处理复制.粘贴.拖拽.长按键(按住键盘不放)等细节上 ...
- BZOJ3238: [Ahoi2013]差异(后缀自动机)
题意 题目链接 Sol 前面的可以直接算 然后原串翻转过来,这时候变成了求任意两个前缀的最长公共后缀,显然这个值应该是\(len[lca]\),求出\(siz\)乱搞一下 #include<bi ...
- javascript之原型
写作背景 最近在抓基础,毕竟没有好地基盖楼容易塌啊...再回首javascript,原型可以说是该语言较为核心的设计之一,我们有必要了解下其设计理念 (#^.^#) 基本概念 MyObject.pro ...
- 转:Jquery的parent和parents(找到某一特定的祖先元素)
Jquery的parent和parents(找到某一特定的祖先元素) 关于Jquery的parent和parents parent是指取得一个包含着所有匹配元素的唯一父元素的元素集合.parents则 ...
- Redis在windows下安装过程(转载)
转载自(http://www.cnblogs.com/M-LittleBird/p/5902850.html) 一.下载windows版本的Redis 官网以及没有下载地址,只能在github上下载, ...
- CentOS7系列--1.5CentOS7配置vim
CentOS7配置vim 1. 安装vim [root@centos7 ~]# yum -y install vim-enhanced Loaded plugins: fastestmirror ba ...
- FineReport中如何实现自动滚屏效果
对于一些特殊的模板,可能为了展示的更加丰富.全面会在一个页面放置很多图表.表格等内容.由于内容过多,超出了浏览器窗口的大小导致内容展示不全的情况.这样我们就需要用到JS滚屏效果来解决,这里主要介绍在F ...
- Vue 框架-04-计算属性
Vue 框架-04-计算属性 计算属性是什么? 大家可以去看官网解释:计算属性和侦听器 今天的第一个小实例: 为啥先放折磨一个实例,之前数据绑定的就已经可以实现了,看起来那么简单,就是为了告诉大家,当 ...