Description

一共n×m个硬币,摆成n×m的长方形。dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬币都在它的左上方(可以正左方也可以正上方),并且这个硬币是从反面向上翻成正面向上。dongdong和xixi轮流操作。如果某一方无法操作,那么他(她)就输了。dongdong先进行第一步操作,假设双方都采用最优策略。问dongdong是否有必胜策略。

Input

第一行一个数T,表示他们一共玩T局游戏。
接下来是T组游戏描述。每组游戏第一行两个数n;m,
接下来n行每行m个字符,第i行第j个字符如果是“H”表示第i行第j列的硬币是正面向上,
否则是反面向上。第i行j列的左上方是指行不超过i并且列不超过j的区域。
1≤n;m≤100,1≤T≤50。

Output

对于每局游戏,输出一行。
如果dongdong 存在必胜策略则输出“- -”(不含 引号) 否则输出“= =”(不含引号)。
(注意输出的都是半角符号,即三个符号 ASCII 码分别为45,61,95)

Sample Input

32
3
HHH
HHH
2 3
HHH
TTH
2 1
T
H

Sample Output

= =
- -
- -

Solution

有一个叫$yyb$的神仙她说这个题打表就可以了,于是我就抄了个爽。

首先要知道翻硬币游戏的一个结论。

假设你操作的最右(下)方的硬币必须是正着的,那么局面的$SG$值为局面中每个正面朝上的棋子单一存在时的$SG$值的异或和。

单一存在时$SG$的异或和就可以打表搞了。规律是:(左上角为$(0,0)$)

如果$i=0$且$j=0$,$SG(i,j)=2^{i+j}$。

否则$SG(i,j)=lowbit(i+j+1)$。

可以发现虽然这个$SG$值太大,可他二进制下都只有一位啊,开个$vis$数组记一下就好了。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N (509)
using namespace std; int T,n,m,flag,vis[N];
char s[N]; int lowbit(int x) {return x&(-x);} int SG(int i,int j)
{
if (i && j) return i+j;
return log2(lowbit(i+j+));
} int main()
{
scanf("%d",&T);
while (T--)
{
flag=;
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&m);
for (int i=; i<n; ++i)
{
scanf("%s",s);
for (int j=; j<m; ++j)
if (s[j]=='T') vis[SG(i,j)]^=;
}
for (int i=; i<n+m-; ++i)
if (vis[i]) flag=;
if (flag) puts("-_-");
else puts("=_=");
}
}

BZOJ1434:[ZJOI2009]染色游戏(博弈论)的更多相关文章

  1. bzoj1434 [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  2. [luogu2594 ZJOI2009]染色游戏(博弈论)

    传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...

  3. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  4. [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  5. BZOJ 1434: [ZJOI2009]染色游戏

    一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...

  6. luogu2594 [ZJOI2009]染色游戏

    做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...

  7. BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 897  Solved: 394[Submit][Status ...

  8. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  9. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

随机推荐

  1. [日常] json_encode对中文和引号的处理差异研究

    json_encode()1.默认就是把所有 ASCII 可显示字符以外的统统转义为 Unicode如果把那些字符转义为 Unicode 之后,无论文件编码是否一致,都不会出现乱码,因此中文转成Uni ...

  2. Spring Boot学习笔记(八)使用jar和war方式打包并在外部Tomcat中部署运行

    使用war包的方式发布到外部Tomcat中去 首先修改pom.xml中的配置,使打包方式设置为war包的形式 然后 maven update project 更新下项目 Application入口文件 ...

  3. JPA注解@GeneratedValue

    @GeneratedValue是JPA的标准用法, JPA提供四种标准用法,由@GeneratedValue的源代码可以看出. public enum GenerationType { TABLE, ...

  4. hdu 1978 How many ways 记忆化搜索 经典例题

    How many ways Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  5. Java转换Word文件到PDF文件

    使用Docx4j将Word文件转换为PDF文件: public static void convertDocxToPDF(String docxFilePath, String pdfPath) th ...

  6. Extjs校验配置项

    Extjsform组件1.Ext.form.Action 配置项:success:执行成功后回调的函数,包括两个参数:form和actionfailure:执行失败后回调的函数,包括两个参数:form ...

  7. wcf和webapi(转)

    WCF 1.这个也是基于SOAP的,数据格式是XML 2.这个是Web Service(ASMX)的进化版,可以支持各种各样的协议,像TCP,HTTP,HTTPS,Named Pipes, MSMQ. ...

  8. 完善:HTML5表单新特征简介与举例——张鑫旭

    一.前言一撇 其实关于HTML5的表单特征早在去年“你必须知道的28个HTML5特征.窍门和技术”一文中就有所介绍(在第十一项),不过,有些遗憾的是,此部分的介绍是以视频形式展示的,其实,是视频还好啦 ...

  9. linux 源码包之脚本安装包的安装

    脚本安装包 脚本安装包并不是独立的软件包类型,常见的实际是源码包.是人为地把安装过程写成了自动安装脚本,只要执行脚本,定义简单的参数,就可以完成安装.非常类似于windows软件的安装方式.在linu ...

  10. 【Java】数组使用

    package aaa; public class aaa { public static void main(String args[]) { int a[]={1,2,3,4}; for(int ...