Description

一共n×m个硬币,摆成n×m的长方形。dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬币都在它的左上方(可以正左方也可以正上方),并且这个硬币是从反面向上翻成正面向上。dongdong和xixi轮流操作。如果某一方无法操作,那么他(她)就输了。dongdong先进行第一步操作,假设双方都采用最优策略。问dongdong是否有必胜策略。

Input

第一行一个数T,表示他们一共玩T局游戏。
接下来是T组游戏描述。每组游戏第一行两个数n;m,
接下来n行每行m个字符,第i行第j个字符如果是“H”表示第i行第j列的硬币是正面向上,
否则是反面向上。第i行j列的左上方是指行不超过i并且列不超过j的区域。
1≤n;m≤100,1≤T≤50。

Output

对于每局游戏,输出一行。
如果dongdong 存在必胜策略则输出“- -”(不含 引号) 否则输出“= =”(不含引号)。
(注意输出的都是半角符号,即三个符号 ASCII 码分别为45,61,95)

Sample Input

32
3
HHH
HHH
2 3
HHH
TTH
2 1
T
H

Sample Output

= =
- -
- -

Solution

有一个叫$yyb$的神仙她说这个题打表就可以了,于是我就抄了个爽。

首先要知道翻硬币游戏的一个结论。

假设你操作的最右(下)方的硬币必须是正着的,那么局面的$SG$值为局面中每个正面朝上的棋子单一存在时的$SG$值的异或和。

单一存在时$SG$的异或和就可以打表搞了。规律是:(左上角为$(0,0)$)

如果$i=0$且$j=0$,$SG(i,j)=2^{i+j}$。

否则$SG(i,j)=lowbit(i+j+1)$。

可以发现虽然这个$SG$值太大,可他二进制下都只有一位啊,开个$vis$数组记一下就好了。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N (509)
using namespace std; int T,n,m,flag,vis[N];
char s[N]; int lowbit(int x) {return x&(-x);} int SG(int i,int j)
{
if (i && j) return i+j;
return log2(lowbit(i+j+));
} int main()
{
scanf("%d",&T);
while (T--)
{
flag=;
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&m);
for (int i=; i<n; ++i)
{
scanf("%s",s);
for (int j=; j<m; ++j)
if (s[j]=='T') vis[SG(i,j)]^=;
}
for (int i=; i<n+m-; ++i)
if (vis[i]) flag=;
if (flag) puts("-_-");
else puts("=_=");
}
}

BZOJ1434:[ZJOI2009]染色游戏(博弈论)的更多相关文章

  1. bzoj1434 [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  2. [luogu2594 ZJOI2009]染色游戏(博弈论)

    传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...

  3. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  4. [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  5. BZOJ 1434: [ZJOI2009]染色游戏

    一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...

  6. luogu2594 [ZJOI2009]染色游戏

    做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...

  7. BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 897  Solved: 394[Submit][Status ...

  8. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  9. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

随机推荐

  1. 【转】Dubbo声明式缓存

    缓存的应用非常广泛,为了提高数据访问的速度.Dubbo也不例外,它提供了声明式缓存,以减少用户加缓存的工作量. 一.Dubbo中缓存策略 lru 基于最近最少使用原则删除多余缓存,保持最热的数据被缓存 ...

  2. LeetCode刷题第二天

    2.给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们 ...

  3. MyBatis 常用写法

    MyBatis 常用写法 1.forEach 循环   forEach 元素的属性主要有 item, idnex, collection, open, separator, close. collec ...

  4. Spring中的IOC示例

    Spring中的IOC示例 工程的大概内容是: 一个人在中国时用中国话问候大家,在国外时用英语问候大家. 其中, IHelloMessage是接口,用来定义输出问候信息 public interfac ...

  5. WebApiTestHelpPage

    这是个什么鬼,第一次见到的时候,我也不知道就花几天时间看了下它的代码 在网上搜索WebApiTestHelpPage会出来很多相关页面   但是它们都是介绍怎么用的,要么就是怎么添加注释   它是怎么 ...

  6. @Controller和@RestController的区别(转)

    @Controller和@RestController的区别? 官方文档: @RestController is a stereotype annotation that combines @Resp ...

  7. Var与Dynamic的区别

    1.var与dynamic的区别   C#中的很多关键词用法比较容易混淆,var和dynamic就是其中一组,但其实它们是有本质的区别的.var 在编译阶段已经确定类型,在初始化时候,必须提供初始化的 ...

  8. 设计模式学习——抽象工厂模式(Abstract Factory Pattern)

    现有一批装备(产品),分为不同的部位(上装.下装)与不同的等级(lv1.lv2).又有不同lv的工厂,只生产对应lv的全套装备. 代码实现上...本次写得比较偷懒,函数实现都写在头文件了.... 有些 ...

  9. set集合去重机制

  10. 解决:在php配置文件路径下,添加php.ini之后,测试页面无法显示

    安装完php之后,通常情况下,会在网站目录下创建一个.php的文件,来查看php安装过程中的参数配置,脚本的内容很简单: <? phpinfo(); ?> 通常情况下,如果能顺利安装下来不 ...