【BZOJ3143】【HNOI2013】游走 高斯消元
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143
我们令$P_i$表示从第i号点出发的期望次数。则$P_n$显然为$0$。
对于$P_2~P_{n-1}$,则有$P_i= \sum \frac{P_j} {d_j}$,其中节点j与节点i有边相连,$d_j$表示节点j的度数。
对于$P_1$,则有$P_i=1+ \sum \frac{P_j} {d_j}$。
不难发现其实就是一个$n$元一次方程组,我们可以通过高斯消元求出每一个$P_i$。
对于一条边$(x,y)$,经过这条边的期望次数为$ \frac {P_x} {d_x} + \frac {P_y} {d_y}$,我们设此值为$p_i$ 。
我们把期望经过次数从大到小排序,则答案为$\sum_{i=1}^{n} p_i \times i$。
然后就做完了。
AC代码如下:
#include<bits/stdc++.h>
#define M 505
using namespace std;
int a[M][M]={},n,m;
double f[M][M]={},p[M]={},du[M]={}; void solve(){
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
double x=f[j][i]/f[i][i];
for(int k=i;k<=n+;k++)
f[j][k]-=x*f[i][k];
}
}
for(int i=n;i;i--){
for(int j=i+;j<=n;j++)
f[i][n+]-=f[i][j]*p[j];
p[i]=f[i][n+]/f[i][i];
}
}
int X[M*M]={},Y[M*M]={}; double hh[M*M]={};
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int x,y; scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=;
du[x]++; du[y]++;
X[i]=x; Y[i]=y;
}
f[][n+]=-; f[n][n]=;
for(int i=;i<n;i++){
f[i][i]=-;
for(int j=;j<=n;j++) if(a[i][j])
f[i][j]=/du[j];
}
solve();
for(int i=;i<=m;i++)
hh[i]=p[X[i]]/du[X[i]]+p[Y[i]]/du[Y[i]];
sort(hh+,hh+m+);
double ans=;
for(int i=;i<=m;i++)
ans+=hh[i]*(m-i+);
printf("%.3lf\n",ans);
}
【BZOJ3143】【HNOI2013】游走 高斯消元的更多相关文章
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
- 【xsy1201】 随机游走 高斯消元
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- BZOJ3143 [Hnoi2013]游走 【高斯消元】
题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
随机推荐
- 浅析10种常见的黑帽seo手法
虽然博主并不认同黑帽seo手法,但是一些常见的黑帽手法还是需要了解的,增加自己对黑帽的认知,也可以在自己优化网站时适时的规避开这些黑帽手法,从而避免自己的网站被搜索引擎惩罚.好了,话不多说,下面进入今 ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- 2018.07.03 POJ 3348 Cows(凸包)
Cows Time Limit: 2000MS Memory Limit: 65536K Description Your friend to the south is interested in b ...
- T4系列文章之2:T4工具简介、调试以及T4运行原理(转)
出处:http://www.cnblogs.com/damonlan/archive/2012/01/12/2320429.html 一.前言 经过第一篇,我想大家现在对T4有了基本的印象,应该对T4 ...
- Django入门与实践-第13章:表单处理(完结)
http://127.0.0.1:8000/boards/1/ http://127.0.0.1:8000/boards/2/ http://127.0.0.1:8000/boards/3/ http ...
- SQL之经典SQL语句大全
经典SQL语句大全 一.基础 1.说明:创建数据库CREATE DATABASE database-name 2.说明:删除数据库drop database dbname3.说明:备份sql serv ...
- [译]window.onerror事件
本文翻译youtube上的up主kudvenkat的javascript tutorial播放单 源地址在此: https://www.youtube.com/watch?v=PMsVM7rjupU& ...
- springmvc elf8848
刚开始觉得孔浩讲得好,之后觉得开涛讲得好,现在觉得elf8848讲得好.其实只是自己学习的各个阶段 孔浩:环境搭建,做了个基础的CRUD 开涛:讲了Controller(不该看),注解,数据绑定,请求 ...
- Spring 注入集合类型
定义了一个类: @Service public class StringTest implements CachedRowSet,SortedSet<String>,Cloneable @ ...
- js正则处理千分位
"222212345.098771".replace(/\d{1,3}(?=(\d{3})+(\.\d*)?$)/g, '$&,');