在人脸识别模式类中,还实现了一种基于LBP直方图的人脸识别方法。LBP图的原理参照:http://www.cnblogs.com/mikewolf2002/p/3438698.html

      在代码中,我们只要使用   Ptr<FaceRecognizer> model = createLBPHFaceRecognizer(); 就创建了一个基于LBPH的人脸识别类,其它代码和前面两种人脸识别方法一样。

     在train函数中,会计算每个样本的LBP图像,并求出该图像的二维直方图,把直方图保存在_histograms中,以便在predict函数调用这些直方图进行匹配。

for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++)

{
   // 计算LBP图

    Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors);
    // 得到直方图
    Mat p = spatial_histogram(
            lbp_image, /* lbp_image */
            static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), //可能的模式数
            _grid_x, /* grid size x */
            _grid_y, /* grid size y */
            true);
    // 把直方图加到匹配模版中

    _histograms.push_back(p);
}
在预测函数中,会先求出输入图像的LBPH图,然后和保存的样本LBPH进行比较,距离最今即为匹配的人脸。

Mat lbp_image = elbp(src, _radius, _neighbors);
Mat query = spatial_histogram(
        lbp_image, /* lbp_image */
        static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */
        _grid_x, /* grid size x */
        _grid_y, /* grid size y */
        true /* normed histograms */);
// 查找最近的匹配者

minDist = DBL_MAX;
minClass = -1;
for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++)

{
    double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);
    if((dist < minDist) && (dist < _threshold))

    {
        minDist = dist;
        minClass = _labels.at<int>((int) sampleIdx);
    }
}

代码:

#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp" #include <iostream>
#include <fstream>
#include <sstream> using namespace cv;
using namespace std; static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
} int main(int argc, const char *argv[])
{ // Get the path to your CSV.
string fn_csv = string("facerec_at_t.txt");
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
images.pop_back();
labels.pop_back();
// The following lines create an LBPH model for
// face recognition and train it with the images and
// labels read from the given CSV file.
//
// The LBPHFaceRecognizer uses Extended Local Binary Patterns
// (it's probably configurable with other operators at a later
// point), and has the following default values
//
// radius = 1
// neighbors = 8
// grid_x = 8
// grid_y = 8
//
// So if you want a LBPH FaceRecognizer using a radius of
// 2 and 16 neighbors, call the factory method with:
//
// cv::createLBPHFaceRecognizer(2, 16);
//
// And if you want a threshold (e.g. 123.0) call it with its default values:
//
// cv::createLBPHFaceRecognizer(1,8,8,8,123.0)
//
Ptr<FaceRecognizer> model = createLBPHFaceRecognizer();
model->train(images, labels);
// The following line predicts the label of a given
// test image:
int predictedLabel = model->predict(testSample);
//
// To get the confidence of a prediction call the model with:
//
// int predictedLabel = -1;
// double confidence = 0.0;
// model->predict(testSample, predictedLabel, confidence);
//
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;
// Sometimes you'll need to get/set internal model data,
// which isn't exposed by the public cv::FaceRecognizer.
// Since each cv::FaceRecognizer is derived from a
// cv::Algorithm, you can query the data.
//
// First we'll use it to set the threshold of the FaceRecognizer
// to 0.0 without retraining the model. This can be useful if
// you are evaluating the model:
//
model->set("threshold", 0.0);
// Now the threshold of this model is set to 0.0. A prediction
// now returns -1, as it's impossible to have a distance below
// it
predictedLabel = model->predict(testSample);
cout << "Predicted class = " << predictedLabel << endl;
// Show some informations about the model, as there's no cool
// Model data to display as in Eigenfaces/Fisherfaces.
// Due to efficiency reasons the LBP images are not stored
// within the model:
cout << "Model Information:" << endl;
string model_info = format("\tLBPH(radius=%i, neighbors=%i, grid_x=%i, grid_y=%i, threshold=%.2f)",
model->getInt("radius"),
model->getInt("neighbors"),
model->getInt("grid_x"),
model->getInt("grid_y"),
model->getDouble("threshold"));
cout << model_info << endl;
// We could get the histograms for example:
vector<Mat> histograms = model->getMatVector("histograms");
// But should I really visualize it? Probably the length is interesting:
cout << "Size of the histograms: " << histograms[0].total() << endl;
return 0;
}

 

程序代码:工程FirstOpenCV35

 

OpenCV学习(40) 人脸识别(4)的更多相关文章

  1. OpenCV学习(38) 人脸识别(3)

                前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容: ...

  2. OpenCV学习(37) 人脸识别(2)

          在前面一篇教程中,我们学习了OpenCV中基于特征脸的人脸识别的代码实现,我们通过代码 Ptr<FaceRecognizer> model = createEigenFaceR ...

  3. OpenCV学习(36) 人脸识别(1)

    本文主要参考OpenCV人脸识别教程:http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html 1.OpenCV ...

  4. 【从零学习openCV】IOS7人脸识别实战

    前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...

  5. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  6. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  7. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  8. 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  9. 基于Opencv快速实现人脸识别(完整版)

    无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...

随机推荐

  1. 洛谷P4645 [COCI2006-2007 Contest#7] BICIKLI [Tarjan,拓扑排序]

    题目传送门 BICIKLI 题意翻译 给定一个有向图,n个点,m条边.请问,1号点到2号点有多少条路径?如果有无限多条,输出inf,如果有限,输出答案模10^9的余数. 两点之间可能有重边,需要看成是 ...

  2. CSUOJ 1826 Languages map+stringstream

    Description The Enterprise has encountered a planet that at one point had been inhabited. The onlyre ...

  3. Jvm内存区域和GC

    运行时数据区域 线程私有 程序计数器 正在执行的字节码指令的地址(native方法时为undefined) Java虚拟机栈 存储栈帧(局部变量表,操作数栈,动态链接,方法出口)OOM,StackOv ...

  4. iOS 9应用开发教程之编辑界面与编写代码

    iOS 9应用开发教程之编辑界面与编写代码 编辑界面 在1.2.2小节中提到过编辑界面(Interface builder),编辑界面是用来设计用户界面的,单击打开Main.storyboard文件就 ...

  5. Where should we fork this repository?

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha 我们应该在哪里分叉这个存储库? Where should we fork this re ...

  6. 递归与分治策略之棋盘覆盖Java实现

    递归与分治策略之棋盘覆盖 一.问题描述 二.过程详解 1.棋盘如下图,其中有一特殊方格:16*16 . 2.第一个分割结果:8*8 3.第二次分割结果:4*4 4.第三次分割结果:2*2 5.第四次分 ...

  7. [BZOJ5303][HAOI2018]反色游戏(Tarjan)

    暴力做法是列异或方程组后高斯消元,答案为2^自由元个数,可以得60分.但这个算法已经到此为止了. 从图论的角度考虑这个问题,当原图是一棵树时,可以从叶子开始唯一确定每条边的选择情况,所以答案为1. 于 ...

  8. vijos p1882 智力题

    题意: 清晨, Alice与Bob在石阶上玩砖块.他们每人都有属于自己的一堆砖块.每人的砖块都由N列组成且N是奇数.Alice的第i列砖块有m[i]个.而Bob的第i列砖块有s[i]个. 他们想建造城 ...

  9. 【对比分析二】Web Storage和cookie的区别

    1)  存储空间不同. a)  Web Storage能提供5MB的存储空间(不同浏览器的提供的空间不同).Cookie仅4KB. b)  Web Storage每个域(包括子域)有独立的存储空间,各 ...

  10. Elasticsearch中document的基础知识

    写在前面的话:读书破万卷,编码如有神-------------------------------------------------------------------- 参考内容: <Ela ...