使用python3 学习了线性回归的api

分别使用逻辑斯蒂回归  和   随机参数估计回归 对良恶性肿瘤进行预测

我把数据集下载到了本地,可以来我的git下载源代码和数据集:https://github.com/linyi0604/MachineLearning

 import numpy as np
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.metrics import classification_report '''
线性分类器
最基本和常用的机器学习模型
受限于数据特征与分类目标的线性假设
逻辑斯蒂回归 计算时间长,模型性能略高
随机参数估计 计算时间短,模型性能略低
''' '''
1 数据预处理
'''
# 创建特征列表
column_names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size',
'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell size',
'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class']
# 使用pandas.read_csv取数据集
data = pd.read_csv('./data/breast/breast-cancer-wisconsin.data', names=column_names)
# 将?替换为标准缺失值表示
data = data.replace(to_replace='?', value=np.nan)
# 丢失带有缺失值的数据 只要有一个维度有缺失就丢弃
data = data.dropna(how='any')
# 输出data数据的数量和维度
# print(data.shape) '''
2 准备 良恶性肿瘤训练、测试数据部分
'''
# 随机采样25%数据用于测试 75%数据用于训练
x_train, x_test, y_train, y_test = train_test_split(data[column_names[1:10]],
data[column_names[10]],
test_size=0.25,
random_state=33)
# 查验训练样本和测试样本的数量和类别分布
# print(y_train.value_counts())
# print(y_test.value_counts())
'''
训练样本共512条 其中344条良性肿瘤 168条恶性肿瘤
2 344
4 168
Name: Class, dtype: int64
测试数据共171条 其中100条良性肿瘤 71条恶性肿瘤
2 100
4 71
Name: Class, dtype: int64
''' '''
3 机器学习模型进行预测部分
'''
# 数据标准化,保证每个维度特征的方差为1 均值为0 预测结果不会被某些维度过大的特征值主导
ss = StandardScaler()
x_train = ss.fit_transform(x_train) # 对x_train进行标准化
x_test = ss.transform(x_test) # 用与x_train相同的规则对x_test进行标准化,不重新建立规则 # 分别使用 逻辑斯蒂回归 和 随机参数估计 两种方法进行学习预测 lr = LogisticRegression() # 初始化逻辑斯蒂回归模型
sgdc = SGDClassifier() # 初始化随机参数估计模型 # 使用 逻辑斯蒂回归 在训练集合上训练
lr.fit(x_train, y_train)
# 训练好后 对测试集合进行预测 预测结果保存在 lr_y_predict中
lr_y_predict = lr.predict(x_test) # 使用 随机参数估计 在训练集合上训练
sgdc.fit(x_train, y_train)
# 训练好后 对测试集合进行预测 结果保存在 sgdc_y_predict中
sgdc_y_predict = sgdc.predict(x_test) '''
4 性能分析部分
'''
# 逻辑斯蒂回归模型自带评分函数score获得模型在测试集合上的准确率
print("逻辑斯蒂回归准确率:", lr.score(x_test, y_test))
# 逻辑斯蒂回归的其他指标
print("逻辑斯蒂回归的其他指标:\n", classification_report(y_test, lr_y_predict, target_names=["Benign", "Malignant"])) # 随机参数估计的性能分析
print("随机参数估计准确率:", sgdc.score(x_test, y_test))
# 随机参数估计的其他指标
print("随机参数估计的其他指标:\n", classification_report(y_test, sgdc_y_predict, target_names=["Benign", "Malignant"])) '''
recall 召回率
precision 精确率
fl-score
support 逻辑斯蒂回归准确率: 0.9707602339181286
逻辑斯蒂回归的其他指标:
precision recall f1-score support Benign 0.96 0.99 0.98 100
Malignant 0.99 0.94 0.96 71 avg / total 0.97 0.97 0.97 171 随机参数估计准确率: 0.9649122807017544
随机参数估计的其他指标:
precision recall f1-score support Benign 0.97 0.97 0.97 100
Malignant 0.96 0.96 0.96 71 avg / total 0.96 0.96 0.96 171
'''

机器学习之路:python线性回归分类器 LogisticRegression SGDClassifier 进行良恶性肿瘤分类预测的更多相关文章

  1. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  2. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  3. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  4. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  5. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  6. 【Python】机器学习之单变量线性回归 利用正规方程找到合适的参数值

    [Python]机器学习之单变量线性回归 利用正规方程找到合适的参数值 本次作业来自吴恩达机器学习. 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同 ...

  7. 【Python】机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值

    [Python]机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值 本题目来自吴恩达机器学习视频. 题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方), ...

  8. 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)

    http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...

  9. 机器学习算法与Python实践之(三)支持向量机(SVM)进阶

    机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...

随机推荐

  1. datagrid时间插件

    jquery easyui日期控件中,在页面里用JS拿到设立的日期值的方法 链接:http://blog.csdn.net/liweibin_/article/details/13509917 jqu ...

  2. 【leetcode 简单】 第八十一题 4的幂

    给定一个整数 (32 位有符号整数),请编写一个函数来判断它是否是 4 的幂次方. 示例 1: 输入: 16 输出: true 示例 2: 输入: 5 输出: false 进阶: 你能不使用循环或者递 ...

  3. 解决windows文件夹不能自动刷新的问题

    我用的是win7系统,最近忽然发现我的文档文件夹里的文件不能自动刷新了,就是当剪切或删除某个文件后,文件夹里的文件没有变化,看起来文件还在原文件夹中,只有通过手动刷新后才能看到效果,该如何解决? 网上 ...

  4. 解决多个python的兼容问题

    方法1:将(安装路径和scripts)路径添加到系统环境变量,谁的顺序在前面谁就是默认的 方法2:修改python的名字,然后再终端输入比如python2或者python3

  5. Qbot回归,已感染5.4万台计算机

    Qbot回归,已感染5.4万台计算机 近日,BAESystems的安全人员发表了一篇关于Qbot网络感知蠕虫回归的调查报告,指出已经感染了5.4万台计算机. FreeBuf百科 Qbot蠕虫,也叫Qa ...

  6. Solr管理索引库——(十三)

    a)          维护索引 1.  添加/更新文档 添加或更新单个文档

  7. vi 编辑器使用技巧

    1.由命令"vi --version"所显示的内容知vi的全局配置文件 2.显示行号   ,非编辑模式输入 : set nu 3.显示颜色 1)在文件中找到 "synta ...

  8. WPF中ListBox的绑定

    WPF中列表式控件派生自ItemsControl类,继承了ItemsSource属性.ItemsSource属性可以接收一个IEnumerable接口派生类的实例作为自己的值(所有可被迭代遍历的集合都 ...

  9. Operfire 安装指南

    http://www.cnblogs.com/hoojo/archive/2012/05/13/2498151.html 本文的英文原文来自 http://www.igniterealtime.org ...

  10. RESTful API 和 Django REST framework

    100天 cmdb最后一天 #RESTful API - 定义规范 如get就是请求题 - 面向资源编程 把网络任何东西都当作资源 #给一个url,根据方法的不同对资源做不同的操作 #返回结果和状态码 ...