\(\mathcal{Description}\)

  link.

  给定一个捕食网络,对于每个物种,求其灭绝后有多少消费者失去所有食物来源。(一些名词与生物学的定义相同 w。)

  原图结点数 \(n\le65534\),边数 \(m\le10^6\),图保证无有向环。

\(\mathcal{Solution}\)

  支配树板题。将原图反向建边,令一个“超级生产者”结点,指向所有生产者,然后求出该图的支配树。每个物种的答案就是其子树大小 \(-1\)。

  以下会讲解对于有向无环图(DAG),如何建出支配树。

在 DAG 上建支配树

  声明对“支配”的定义:对于 \(u\) 的支配点 \(v\),满足删去 \(v\) 后,从源点不可到达 \(u\)。

  最近支配点:所有支配 \(u\) 的 \(v\) 中距离 \(u\) 最近的一个点。可以证明某个点的最近支配点唯一。

  按照拓扑序,从源点开始处理。可以直观地发现,点 \(u\) 的最近支配点就是其所有前驱结点在支配树上的 LCA。所以只需要每次向支配树加入当前结点,并处理处当前结点的倍增信息即可。

\(\mathcal{Code}\)

#include <queue>
#include <cstdio>
#include <vector> #define adj( g, u, v ) \
for ( int _eid = g.head[u], v; v = g.to[_eid], _eid; _eid = g.nxt[_eid] ) const int MAXN = 65534, MAXM = 1e6, MAXLG = 15;
int n, dep[MAXN + 5], ans[MAXN + 5], rnk[MAXN + 5], fa[MAXN + 5][MAXLG + 5];
std::queue<int> que;
std::vector<int> pre[MAXN + 5]; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} struct Graph {
int ecnt, head[MAXN + 5], to[MAXM + 5], nxt[MAXM + 5], ind[MAXN + 5];
inline void link ( const int s, const int t ) {
++ ind[to[++ ecnt] = t], nxt[ecnt] = head[s], head[s] = ecnt;
pre[t].push_back ( s );
}
} sour, domt; inline int LCA ( int u, int v ) {
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
for ( int i = 15; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
for ( int i = 15; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
} inline void calc ( const int u ) {
ans[u] = 1;
adj ( domt, u, v ) calc ( v ), ans[u] += ans[v];
} int main () {
n = rint ();
for ( int i = 1, t; i <= n; ++ i ) while ( t = rint () ) sour.link ( t, i );
for ( int i = 1; i <= n; ++ i ) if ( ! sour.ind[i] ) sour.link ( n + 1, i );
int cnt = 0;
que.push ( n + 1 );
for ( int u; ! que.empty (); que.pop () ) {
rnk[++ cnt] = u = que.front ();
adj ( sour, u, v ) if ( ! -- sour.ind[v] ) que.push ( v );
}
for ( int i = 1; i <= cnt; ++ i ) {
int u = rnk[i], f = 0;
if ( ! pre[u].empty () ) f = pre[u][0];
for ( int j = 1; j < ( int ) pre[u].size (); ++ j ) f = LCA ( f, pre[u][j] );
dep[u] = dep[fa[u][0] = f] + 1, domt.link ( f, u );
for ( int j = 1; j <= 15; ++ j ) fa[u][j] = fa[fa[u][j - 1]][j - 1];
}
calc ( n + 1 );
for ( int i = 1; i <= n; ++ i ) printf ( "%d\n", ans[i] - 1 );
return 0;
}

Solution -「ZJOI2012」「洛谷 P2597」灾难的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  3. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  4. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  5. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  6. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  7. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

  8. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

  9. 「BZOJ2733」「洛谷3224」「HNOI2012」永无乡【线段树合并】

    题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nl ...

随机推荐

  1. java.exe and -classpth or -cp

    mydirname=$(dirname $0) java -cp $classes_dir:$lib_dir/*:$config_dir -Doracle.net.wallet_location=${ ...

  2. C语言 运算符优先级和结合方向

    运算符优先级和结合方向 初级运算符( ).[ ].->..  高于  单目运算符  高于  算数运算符(先乘除后加减)  高于  关系运算符  高于  逻辑运算符(不包括!)  高于  条件运算 ...

  3. CVE-2020-0786(永恒之黑) GetShell

    描述 Microsoft服务器消息块3.1.1(SMBv3)协议处理某些请求的方式中存在一个远程执行代码漏洞,也称为" Windows SMBv3客户端/服务器远程执行代码漏洞". ...

  4. 《剑指offer》面试题11. 旋转数组的最小数字

    问题描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素.例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的 ...

  5. 《剑指offer》面试题24. 反转链表

    问题描述 定义一个函数,输入一个链表的头节点,反转该链表并输出反转后链表的头节点. 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4-> ...

  6. cesium 3dtiles模型单体化点击高亮效果

    前言 cesium 官网的api文档介绍地址cesium官网api,里面详细的介绍 cesium 各个类的介绍,还有就是在线例子:cesium 官网在线例子,这个也是学习 cesium 的好素材. c ...

  7. javaObject类—getClass方法

    1 package face_object; 2 /* 3 * Object:所有类的根类. 4 * Object是不断抽取而来的,具备所有对象都具备的共性内容. 5 * 常用的共性功能: 6 * 7 ...

  8. (1)puppet安装

    简介: 基于C/S架构的Puppet更新方式一般有两种,一种是Agent端设置同步时间主动去PuppetMaster端拉取配置,另一种是通过PuppetMaster端使用puppet kick命令或者 ...

  9. Clang-Format 个人常用配置

    Clang-Format 个人常用配置 本文记录 Clang-Format 个人常用配置. 欲了解更多配置选项,可查阅 官方文档. BasedOnStyle: Google AccessModifie ...

  10. windows批处理详解

    转:https://mp.weixin.qq.com/s/Ktbl4P16Qye7OxDNEzJI5Q