题目

剑指 Offer 12. 矩阵中的路径

思路1(回溯、DFS)

  • 这题可以使用回溯+递归来解决,思路如下:

    1. 将二维数组的每一个元素都作为起点进行回溯查找
    2. 每次查找的时候,都有四个方向,但是上一个方向不能再次被遍历,因此需要将遍历过的位置进行做标记,递归返回的时候再还原
    3. 递归过程中要判断一些条件:越界直接返回false、当前字符和word中的不匹配也直接返回false
    4. 何时为匹配成功呢?只要能匹配到word的最后一个字符,即curIndex == cs.length-1(curIndex为每次搜索的深度,不过是从0开始的,就是在word中的位置;cs.length-1为最后一个字符的索引位置),因此后面剩下的就不用查找了

代码

class Solution {
public boolean exist(char[][] board, String word) {
char[] cs = word.toCharArray(); // 遍历整个二维数组,即将每个字符作为第一个字符进行尝试
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
// 只要有一条符合条件,则返回true
if (dfs(board, cs, i, j, 0)) {
return true;
}
}
} // 没找到
return false;
} public boolean dfs(char[][] board, char[] cs, int i, int j, int curIndex) {
// 超过二维数组边界就返回false
// 字符不匹配也直接结束递归
if (i < 0 || i >= board.length || j < 0 || j >= board[0].length || board[i][j] != cs[curIndex]) {
return false;
} // 如果以及全部匹配到了,就直接返回true,而不用继续匹配剩下的啦
if (curIndex == cs.length - 1) {
return true;
} // 能递归到这里,说明当前cs中curIndex索引对应的字符和boards是匹配的
// 因此我们需要吧遍历过的字符设置为空白,防止再次遍历
board[i][j] = '\0';
boolean res = dfs(board, cs, i + 1, j, curIndex + 1) ||
dfs(board, cs, i - 1, j, curIndex + 1) ||
dfs(board, cs, i, j + 1, curIndex + 1) ||
dfs(board, cs, i, j - 1, curIndex + 1);
// 回溯的时候要把原来设置为空白字符的还原
board[i][j] = cs[curIndex]; // 只要出现true,就一路返回
return res;
}
}

复杂度分析

  • 时间复杂度:\(O(MN·3^K)\),二维数组共有M·N个起点;然后对于每个起点来说,每步都有三个方向可以选择(不包括上一个方向),最长要走的步数就是word的长度K,因此复杂度为\(3^K\)
  • 空间复杂度:\(O(K)\),递归深度最深也就是word的长度

力扣 - 剑指 Offer 12. 矩阵中的路径的更多相关文章

  1. 剑指 Offer 12. 矩阵中的路径 + 递归 + 深搜 + 字符串问题

    剑指 Offer 12. 矩阵中的路径 题目链接 题目类似于迷宫的搜索. 需要注意的是,需要首先判断起始搜索的位置,可能有多个起点,都需要一一尝试. 每轮迭代的时候记得将是否遍历标记数组还原为未遍历的 ...

  2. 剑指 Offer 12. 矩阵中的路径

    题目描述 是一道很常见的深搜题目,不过里面要考虑一些边界问题,比如走过的路径是不能再次走入的,所以我这里我自己的 代码想到是利用一个新的二维的数组,记录走过的路径,不过题解的直接将原二维数组中的路径隐 ...

  3. 力扣 - 剑指 Offer 39. 数组中出现次数超过一半的数字

    题目 剑指 Offer 39. 数组中出现次数超过一半的数字 思路1(排序) 因为题目说一定会存在超过数组长度一半的一个数字,所以我们将数组排序后,位于length/2位置的一定是众数 代码 clas ...

  4. 力扣 - 剑指 Offer 22. 链表中倒数第k个节点

    题目 剑指 Offer 22. 链表中倒数第k个节点 思路1(栈) 既然要倒数第k个节点,那我们直接把所有节点放到栈(先进后出)里面,然后pop弹出k个元素就可以了 代码 class Solution ...

  5. 【Java】 剑指offer(11) 矩阵中的路径

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字 ...

  6. Go语言实现:【剑指offer】矩阵中的路径

    该题目来源于牛客网<剑指offer>专题. 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向 ...

  7. 剑指Offer 65. 矩阵中的路径 (回溯)

    题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子.如果一条路径经过了矩阵中 ...

  8. [剑指Offer] 65.矩阵中的路径

    题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子.如果一条路径经过了矩阵中 ...

  9. 剑指offer:矩阵中的路径(递归回溯法DFS类似迷宫)

    1. 题目描述 /* 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径. 路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子. 如果一条 ...

随机推荐

  1. 题解 [PA2019]Trzy kule

    link Description 对于两个长度为 \(n\) 的 \(01\) 串 \(a_1,a_2,\dots,a_n\) 和 \(b_1,b_2,\dots,b_n\),定义它们的距离 \(d( ...

  2. 题解 「2017 山东一轮集训 Day7」逆序对

    题目传送门 Description 给定 $ n, k $,请求出长度为 $ n $ 的逆序对数恰好为 $ k $ 的排列的个数.答案对 $ 10 ^ 9 + 7 $ 取模. 对于一个长度为 $ n ...

  3. SignalR 在React/GO技术栈的生产应用

    哼哧哼哧半年,优化改进了一个运维开发web平台. 本文记录SignalR在react/golang 技术栈的生产小实践. 1. 背景 有个前后端分离的运维开发web平台, 后端会间隔5分钟同步一次数据 ...

  4. JavaScript兼容性汇总

    一般兼容性问都体现到DOM和事件上 ​ 只聊ie6+版本浏览器,希望小伙伴们别纠结更低版本浏览器哈^_^ DOM 获取元素 document.getElementsByclassName 不兼容ie6 ...

  5. 深入理解java中main方法

    理解main方法语法 深入理解main方法: 解释main方法的形式:public static void main(String[] args){} main方法调用者:虚拟机 java虚拟机需要调 ...

  6. 第31篇-方法调用指令之invokevirtual

    invokevirtual字节码指令的模板定义如下: def(Bytecodes::_invokevirtual , ubcp|disp|clvm|____, vtos, vtos, invokevi ...

  7. Beta阶段第二次会议

    时间:2020.5.18 工作进展 姓名 工作 难度 完成度 ltx 1.在开小程序开发文档,学习相关知识 轻 85% xyq 1.完成活动场地申请可视化代码(耗时半天) 中 100% lm 1.设计 ...

  8. Spring Cloud Alibaba 的服务注册与发现

    Spring Cloud Alibaba 服务发现例子 一.需求 1.提供者完成的功能 2.消费者完成的功能 3.可以附加的额外配置 二.实现步骤 1.总的依赖引入 2.服务提供者和发现者,引入服务发 ...

  9. Noip模拟30 2021.8.4

    T1 毛一琛 考场上打的稳定的$O((2^n)^2)$的暴力.其实再回忆一下上次那道用二进制枚举的题$y$ 就可以知道一样的道理,使用$\textit{Meet In the Middle}$, 按照 ...

  10. 攻防世界 web4.cookie

    题有几种解法,我有点懒,懒的打开burp,所以可以直接在浏览器拿flag, 首先访问ip/cookie.php,提示:See the http response 接着F12查看响应头 给你cyberp ...